Advertisements
Advertisements
प्रश्न
`int_1^2 x^2 "d"x` = ______
उत्तर
`7/3`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`
Choose the correct option from the given alternatives :
If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then
Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`
Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`
Evaluate the following : `int_0^pi (sin^-1x + cos^-1x)^3 sin^3x*dx`
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
Choose the correct alternative :
`int_2^3 x^4*dx` =
Choose the correct alternative :
`int_"a"^"b" f(x)*dx` =
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
Solve the following : `int_1^2 x^2*dx`
`int_1^2 ("e"^(1/x))/(x^2) "d"x` =
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Solve the following.
`int_1^3x^2 logx dx`
Solve the following.
`int_1^3x^2logx dx`
Solve the following.
`int_1^3 x^2 logxdx`