Advertisements
Advertisements
प्रश्न
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
उत्तर
Let, I = `int_0^1 (x^2 + 3x + 2)/sqrtxdx`
= `int_0^1[x^2/sqrtx + (3x)/sqrtx + 2/sqrtx]dx`
= `int_0^1[x^2/x^{1/2} + (3x)/x^{1/2} + 2/x^{1/2}]dx`
= `int_0^1[x^{3/2} + 3x^{1/2} + 2/sqrtx]dx`
I = `int_0^1 x^{3/2}dx + 3int_0^1 x^{1/2}dx + 2int_0^1 1/sqrtxdx`
= `[x^{5/2}/(5/2)]_0^1 + 3[x^{3/2}/(3/2)]_0^1 + 2[2sqrtx]_0^1`
= `[1^{5/2}/(5/2) - 0^{5/2}/(5/2)] + 3[1^{3/2}/(3/2) - 0^{3/2}/(3/2)] + 2[2sqrt1 - 2sqrt0]`
I = `[1 xx 2/5] + 3[1 xx 2/3] + 2[2 xx 1 - 2 xx 0]`
I = `2/5 + 3 xx 2/3 + 2 xx 2`
= `2/5 + 6/3 + 4 = (6 + 30)/15 + 4 = (6 + 30 + 60)/15 = 96/15 = 32/5`
∴ I = `32/5`
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int_0^(pi/2) sqrt(cos x) sin^3x * dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`
Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`
Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`
Evaluate the following integrals:
`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`
Choose the correct alternative :
`int_(-9)^9 x^3/(4 - x^2)*dx` =
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2)) "d"x`
By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Solution: Let I = `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`
∴ x + 3 = A(x + 2) + B.x
∴ A = `square`, B = `square`
∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`
∴ I = `[square log x + square log(x + 2)]_1^2`
∴ I = `square`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`