हिंदी

Evaluate the following definite integrals: ∫01x2+3x+2xdx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`

योग

उत्तर

Let, I = `int_0^1 (x^2 + 3x + 2)/sqrtxdx`

= `int_0^1[x^2/sqrtx + (3x)/sqrtx + 2/sqrtx]dx`

= `int_0^1[x^2/x^{1/2} + (3x)/x^{1/2} + 2/x^{1/2}]dx`

= `int_0^1[x^{3/2} + 3x^{1/2} + 2/sqrtx]dx`

I = `int_0^1 x^{3/2}dx + 3int_0^1 x^{1/2}dx + 2int_0^1 1/sqrtxdx`

= `[x^{5/2}/(5/2)]_0^1 + 3[x^{3/2}/(3/2)]_0^1 + 2[2sqrtx]_0^1`

= `[1^{5/2}/(5/2) - 0^{5/2}/(5/2)] + 3[1^{3/2}/(3/2) - 0^{3/2}/(3/2)] + 2[2sqrt1 - 2sqrt0]`

I = `[1 xx 2/5] + 3[1 xx 2/3] + 2[2 xx 1 - 2 xx 0]`

I = `2/5 + 3 xx 2/3 + 2 xx 2`

= `2/5 + 6/3 + 4 = (6 + 30)/15 + 4 = (6 + 30 + 60)/15 = 96/15 = 32/5`

∴ I = `32/5`

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Definite Integration - EXERCISE 6.1 [पृष्ठ १४५]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Definite Integration
EXERCISE 6.1 | Q 4. | पृष्ठ १४५

संबंधित प्रश्न

Evaluate:

`int_0^(pi/2) sqrt(cos x) sin^3x * dx`


Evaluate the following :  `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`


Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`


Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`


Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`


Evaluate the following integrals:

`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`


Choose the correct alternative :

`int_(-9)^9 x^3/(4 - x^2)*dx` =


Fill in the blank : `int_0^1 dx/(2x + 5)` = _______


Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`


Evaluate `int_1^"e" 1/(x(1 + log x)^2)  "d"x`


Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2))  "d"x`


By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2))  "d"x`

Solution: Let I = `int_1^2 (x + 3)/(x(x + 2))  "d"x`

Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`

∴ x + 3 = A(x + 2) + B.x

∴ A = `square`, B = `square`

∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`

∴ I = `[square log x + square log(x + 2)]_1^2`

∴ I = `square`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Solve the following:

`int_1^3 x^2 log x dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Solve the following.

`int_1^3 x^2 log x  dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×