Advertisements
Advertisements
प्रश्न
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
उत्तर
Let I = `int_1^"e" 1/(x(1 + log x)^2) "d"x`
Put 1 + log x = t
∴ `1/x "d"x` = dt
When x = 1, t = 1 + log 1 = 1 + 0 = 1
When x = e, t = 1 + log e = 1 + 1 = 2
∴ I = `int_1^2 "dt"/"t"^2`
= `int_1^2 "t"^(-2) "dt"`
= `[("t"^(-1))/(-1)]_1^2`
= `-[1/"t"]_1^2`
= `-(1/2 - 1)`
∴ I = `-((-1)/2)`
= `1/2`
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
State whether the following statement is True or False:
`int_2^3 x/(x^2 + 1) "d"x = 1/2 log 2`
Evaluate `int_0^1 "e"^(x^2)*"x"^3 "d"x`
`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
`int_0^4 1/sqrt(4x - x^2)dx` = ______.
Evaluate the following definite intergral:
`int _1^3logxdx`
Solve the following.
`int_1^3 x^2 log x dx `
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`
Solve the following.
`int_1^3x^2 logx dx`