हिंदी

Prove that: ∫02af(x)dx=∫0af(x)dx+∫0af(2a-x)dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`

योग

उत्तर

 `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`

R.H.S : `int_0^a f(x) dx + int_0^a f(2a - x)dx`

= I1 + I2  ...(i)

Consider I2 = `int_0^a f(2a - x)dx`

Put 2a − x = t

i.e. x = 2a − t

∴ −1 dx = 1 dt

`\implies` dx = − dt

As x varies from 0 to 2a, t varies from 2a to 0

I = `int_(2a)^a f(t) (- dt)`

= `- int_(2a)^a f(t) dt`

= `int_0^(2a) f(t) dt`  ...`(int_a^b f(x)dx = -int_b^a f(x)dx)`

= `int_0^(2a) f(x) dx`  ...`(int_a^b f(x)dx = int_a^b f(t)dx)`

∴ `int_0^a f(x)dx = int_0^(2a) f(x)dx`

From equation (i)

`int_0^a f(x)dx + int_0^a f(2a - x)dx = int_0^a f(x)dx + int_0^(2a) f(x)dx`

= `int_0^(2a) f(x)dx` : L.H.S

Thus, `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Official

संबंधित प्रश्न

Evaluate:

`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`


Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`


Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`


Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`


Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`


Evaluate the following:

`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`


Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`


`int_2^3 dx/(x(x^3 - 1))` = ______.


Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`


Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`


Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`


Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`


Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`


Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`


Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.


Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`


Evaluate the following definite integral:

`int_1^3 logx.dx`


Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`


Choose the correct alternative : 

`int_(-2)^3 dx/(x + 5)` =


Fill in the blank : `int_2^3 x^4*dx` = _______


Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______


Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______


Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`


State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`


Solve the following : `int_4^9 (1)/sqrt(x)*dx`


Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`


Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`


`int_0^1 sqrt((1 - x)/(1 +  x))  "d"x` =


Prove that: `int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`


Choose the correct alternative:

`int_2^3 x/(x^2 - 1)  "d"x` =


Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2))  "d"x`


`int_0^4 1/sqrt(4x - x^2)dx` = ______.


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Evaluate the following definite intergral:

`int_1^3logxdx`


Solve the following.

`int_0 ^1 e^(x^2) * x^3`dx


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Solve the following.

`int_1^3 x^2 log x  dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Solve the following.

`int_0^1e^(x^2) x^3 dx`


Evaluate the following definite integral:

`int_-2^3 1/(x+5).dx`


Evaluate the following definite intergral.

`int_1^2 (3x)/((9x^2 - 1))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×