Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`
उत्तर
Let I = `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx` ...(1)
We use the property, `int_a^b f(x)*dx = int_a^bf(a + b - x)*dx`.
Here `a = pi/(5), b = (3pi)/(10)`.
Hence changing x by `pi/(5) + (3pi)/(10) - x`, we get,
I = `int_(pi/5)^((3pi)/(10)) (sin(pi/5 + (3pi)/(10) - x))/(sin(pi/5 + (pi)/(10) - x) + cos(pi/5 + (3pi)/(10) - x))*dx`
= `int_(pi/5)^((3pi)/(10)) (sin(pi/2 - x))/(sin(pi/2 - x) + cos(pi/2 - x))*dx`
= `int_(pi/5)^((3pi)/(10)) cosx/(cosx + sinx)*dx` ...(2)
Adding (1) and (2), we get,
2I = `int_(pi/5)^((3pi)/(10)) sinx/(sinx + cosx)*dx + int_(pi/5)^((3pi)/(10)) cosx/(cosx + sinx)*dx`
= `int_(pi/5)^((3pi)/(10)) (sinx + cosx)/(sinx + cosx)*dx`
= `int_(pi/5)^((3pi)/(10))1*dx = [x]_(pi/5)^((3pi)/10)`
= `(3pi)/(10) - pi/(5)`
= `pi/(10)`
∴ I = `pi/(20)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate : `int_0^(pi/4) sec^4x*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`
Evaluate the following : `int_0^pi (sin^-1x + cos^-1x)^3 sin^3x*dx`
Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`
Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.
Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`
Choose the correct alternative :
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`
Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`
Choose the correct alternative:
`int_(-2)^3 1/(x + 5) "d"x` =
State whether the following statement is True or False:
`int_0^"a" 3x^2 "d"x` = 27, then a = 2.5
State whether the following statement is True or False:
`int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
If `int_0^"a" (2x + 1) "d"x` = 2, find a
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
Evaluate the following definite integrats:
`int_4^9 1/sqrt x dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_1^3 logx dx`
Solve the following.
`int_1^3 x^2 log x dx `
If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x dx` = k then k = ______.
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Solve the following:
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtxdx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Solve the following.
`int_1^3x^2logx dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2 - 1))dx`