हिंदी

Evaluate : ∫0π4sec4x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate : `int_0^(pi/4) sec^4x*dx`

योग

उत्तर

Let I = `int_0^(pi/4) sec^4x*dx`

= `int_0^(pi/4) sec^2x*sec^2x*dx`

= `int_0^(pi/4) (1 + tan^2x)sec^2x*dx`
Put tan x = t
∴ sec2x·dx = dt
When x = 0, t = tan 0 = 0

When x = `pi/(4), t = tan  pi/(4)` = 1

∴ I = `int_0^1 (1 + t^2)*dt`

= `[t + t^3/(3)]_0^1`

= `1+ (1)/(3) - 0`

= `(4)/(3)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Definite Integration - Exercise 4.2 [पृष्ठ १७२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Definite Integration
Exercise 4.2 | Q 2.1 | पृष्ठ १७२

संबंधित प्रश्न

Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`


Evaluate:

`int_0^1 sqrt((1 - x)/(1 + x)) * dx`


Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`


Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`


Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`


Evaluate the following : `int_0^pi x sin x cos^2x*dx`


Choose the correct option from the given alternatives :

The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is


Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`


Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.


Evaluate the following definite integral:

`int_1^3 logx.dx`


Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`


Choose the correct alternative : 

`int_4^9 dx/sqrt(x)` =


Choose the correct alternative :

If `int_0^"a" 3x^2*dx` = 8, then a = ?


Choose the correct alternative :

`int_"a"^"b" f(x)*dx` =


Fill in the blank : `int_2^3 x^4*dx` = _______


Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`


Solve the following : `int_2^3 x/(x^2 + 1)*dx`


`int_1^2 ("e"^(1/x))/(x^2)  "d"x` =


Choose the correct alternative:

`int_2^3 x^4  "d"x` =


State whether the following statement is True or False:

`int_0^"a" 3x^2  "d"x` = 27, then a = 2.5


State whether the following statement is True or False: 

`int_2^3 x/(x^2 + 1)  "d"x = 1/2 log 2`


State whether the following statement is True or False:

`int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`


Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2))  "d"x`


Evaluate `int_0^1 "e"^(x^2)*"x"^3  "d"x`


Evaluate the following definite integrals:  `int_-2^3 1/(x + 5) *dx`


Evaluate the following definite integral:

`int_1^3 log x  dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Prove that `int_0^(2a) f(x)dx = int_0^a[f(x)  + f(2a - x)]dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Solve the following:

`int_1^3 x^2 log x dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtxdx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Solve the following.

`int_1^3x^2logx  dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite intergral.

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite intergral:

`int_(1)^3logx  dx`


Solve the following.

`int_1^3x^2 logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×