Advertisements
Advertisements
प्रश्न
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
उत्तर
Let I = `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Put `tan x/(2)` = t
∴ x = 2 tan–1 t
∴ dx = `(2dt)/(1 + t^2)`
and
sinx = `(2t)/(1 + t^2), cos x = (1 - t^2)/(1 + t^2)`
When x = 0, t = tan0 = 0
When x = `pi, t = tan pi/(2) = oo`
∴ I = `int_0^oo (1)/(3 + 2((2t)/(1 + t^2)) + ((1 - t^2)/(1 + t^2)))*(2dt)/(1 + t^2)`
= `int_0^oo (1)/(2t^2 + 4t + 4)*dt`
= `(2)/(2) int_0^oo (1)/(t^2 + 2t + 2)*dt`
= `int_0^oo (1)/((t^2 + 2t + 1) + 1)*dt`
= `int_0^oo (1)/((t^2 + 2t + 1 + 1)*dt`
= `int_0^oo (1)/((t + 1)^2 + (1)^2)*dt`
= `(1)/(1)[tan^-1 ((t + 1)/1)]_0^oo`
= `[tan^-1 (t + 1)]_0^oo`
= `tan^-1 oo - tan^1 1`
= `pi/(2) - pi/(4)`
= `pi/(4)`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`
Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`
Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
`int_2^3 dx/(x(x^3 - 1))` = ______.
Choose the correct option from the given alternatives :
`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`
Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`
Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`
Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Choose the correct alternative :
If `int_0^"a" 3x^2*dx` = 8, then a = ?
Fill in the blank : `int_0^2 e^x*dx` = ________
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`
Solve the following:
`int_0^1 e^(x^2)*x^3dx`
Solve the following : `int_(-4)^(-1) (1)/x*dx`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
`int_1^2 ("e"^(1/x))/(x^2) "d"x` =
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Choose the correct alternative:
`int_0^"a" 3x^5 "d"x` = 8, then a =
Choose the correct alternative:
`int_4^9 ("d"x)/sqrt(x)` =
If `int_0^"a" (2x + 1) "d"x` = 2, find a
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x + 5)dx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite intergral:
`int _1^3logxdx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`
Solve the following.
`int_1^3x^2 logx dx`