Advertisements
Advertisements
प्रश्न
Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`
उत्तर
Let I = `int_1^2 (x + 3)/(x (x + 2))*dx`
Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/(x + 2)` ...(i)
∴ x + 3 = A(x + 2) + Bx ...(ii)
Putting x = 0 in (ii), we get
3 = A(0 + 2) + B(0)
∴ 3 = 2A
∴ A = `(3)/(2)`
Putting x = – 2 in (ii), we get
– 2 + 3 = A(–2 + 2) + B(– 2)
∴ 1 = – 2B
∴ B = `(1)/(2)`
From (i), we get
`(x + 3)/(x(x + 2)) = (3)/(2)*(1)/x - (1)/(2(x + 2)`
∴ I = `int_1^2[3/(2x) - (1)/(2(x + 2))]*dx`
= `(3)/(2) int_1^2 (1)/x*dx - (1)/(2) int_1^2 (1)/(x + 2)*dx`
= `(3)/(2)[log|x|]_1^2 - (1)/(2)[log|x + 2|]_1^2`
= `(3)/(2)[log |2| - log|1|] - (1)/(2) [log|2 +2| - log|1 + 2|]`
= `(3)/(2)(log 2 - 0) - (1)/(2)(log4 - log3)`
= `(3)/(2) log2 - (1)/(2)(log 4/3)`
= `(1)/(2)(3log2 - log 4/3)`
= `(1)/(2) log(2^3 xx 3/4)`
= `(1)/(2)log((8 xx 3)/4)`
∴ I = `(1)/(2)log6`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`
Evaluate the following:
`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`
Choose the correct option from the given alternatives :
Let I1 = `int_e^(e^2) dx/logx "and" "I"_2 = int_1^2 e^x/x*dx`, then
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`
Evaluate the following : `int_(-2)^(3) |x - 2|*dx`
Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`
Evaluate the following definite integral:
`int_(-2)^3 (1)/(x + 5)*dx`
Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Choose the correct alternative :
`int_0^2 e^x*dx` =
Choose the correct alternative :
`int_"a"^"b" f(x)*dx` =
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`
Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
Choose the correct alternative:
`int_0^"a" 3x^5 "d"x` = 8, then a =
Choose the correct alternative:
`int_2^3 x/(x^2 - 1) "d"x` =
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
`int_a^b f(x) dx = int_a^b f (t) dt`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`