Advertisements
Advertisements
प्रश्न
Solve the following:
`int_1^3 x^2 log x*dx`
उत्तर
Let I = `int_1^3 x^2 log x*dx`
= `[log x int x^2*dx]_1^3 - int_1^3 [d/dx (log x) int x^2*dx]*dx`
= `[log x* x^3/3]_1^3 - int_1^3 (1)/x* x^3/(3) *dx`
= `[9 log 3 - log 1* 1/3] - (1)/(3) int_1^3 x^2*dx`
= `[9 log 3 - 0] - (1)/(3)[x^3/3]_1^3`
= `9 log 3 - (1)/(3)(27/3 - 1/3)`
= `9 log 3 - (1)/(3)(26/3)`
∴ I = `9 log 3 - (26)/(9)`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`
Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Evaluate : `int_0^(pi/4) sec^4x*dx`
Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`
Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______
Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______
Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`
Solve the following : `int_2^3 x/(x^2 + 1)*dx`
Evaluate `int_1^2 (3x)/((9x^2 - 1)) "d"x`
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/ ((9x^2 -1)) dx`
Evaluate the integral.
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`