Advertisements
Advertisements
प्रश्न
Evaluate `int_1^2 (3x)/((9x^2 - 1)) "d"x`
उत्तर
Let I = `int_1^2 (3x)/((9x^2 - 1)) "d"x`
= `3int_1^2 x/(9x^2 - 1) "d"x`
Put 9x2 – 1 = t
∴ 18x dx = dt
∴ x dx = `1/18` dt
When x = 1, t = 9(1)2 – 1 = 8
When x = 2, t = 9(2)2 – 1 = 35
∴ I = `3int_8^35 1/"t"*"dt"/18`
= `1/6 int_8^35 "dt"/"t"`
= `1/6[log|"t"|]_8^35`
= `1/6(log 35 - log 8)`
∴ I = `1/6 log (35/8)`
APPEARS IN
संबंधित प्रश्न
Prove that:
`{:(int_(-a)^a f(x) dx = 2 int_0^a f(x) dx",", "If" f(x) "is an even function"),( = 0",", "if" f(x) "is an odd function"):}`
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`
Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Choose the correct alternative :
`int_4^9 dx/sqrt(x)` =
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______
Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`
Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`
Choose the correct alternative:
`int_4^9 ("d"x)/sqrt(x)` =
Solve the following.
`int_1^3x^2 logx dx`
Solve the following.
`int_1^3x^2log x dx`