Advertisements
Advertisements
प्रश्न
Evaluate:
`int_1^2 1/(x^2 + 6x + 5) dx`
Evaluate:
`int_1^2 (dx)/(x^2 + 6x + 5)`
उत्तर
Let I = `int_1^2 1/(x^2 + 6x + 5)`
= `int_1^2 (dx)/(x^2 + 6x + 9 - 9 + 5)`
= `int_1^2 (dx)/((x + 3)^2 - 4)`
= `int_1^2 (dx)/((x + 3)^2 - (2)^2)`
= `1/(2 xx 2)[log|(x + 3 - 2)/(x + 3 + 2)|]_1^2`
= `1/4[log|(x + 1)/(x + 5)|]_1^2`
= `1/4[log(3/7) - log(2/6)]`
= `1/4 log(3/7 xx 6/2)`
∴ I = `1/4 log(9/7)`
संबंधित प्रश्न
Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`
Evaluate:
`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`
Choose the correct option from the given alternatives :
If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`
Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Evaluate the following integrals:
`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`
Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______
Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______
Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
Choose the correct alternative:
`int_4^9 ("d"x)/sqrt(x)` =
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
Evaluate `int_0^1 "e"^(x^2)*"x"^3 "d"x`
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate:
`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite intergral:
`int_(-2)^3 1/(x + 5)dx`