हिंदी

Evaluate: ∫121x2+6x+5 dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate:

`int_1^2 1/(x^2 + 6x + 5)  dx`

Evaluate:

`int_1^2 (dx)/(x^2 + 6x + 5)`

मूल्यांकन

उत्तर

Let I = `int_1^2 1/(x^2 + 6x + 5)`

= `int_1^2 (dx)/(x^2 + 6x + 9 - 9 + 5)`

= `int_1^2 (dx)/((x + 3)^2 - 4)`

= `int_1^2  (dx)/((x + 3)^2 - (2)^2)`

= `1/(2 xx 2)[log|(x + 3 - 2)/(x + 3 + 2)|]_1^2`

= `1/4[log|(x + 1)/(x + 5)|]_1^2`

= `1/4[log(3/7) - log(2/6)]`

= `1/4 log(3/7 xx 6/2)`

∴ I = `1/4 log(9/7)`

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.6: Definite Integration - Q.4

संबंधित प्रश्न

 Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`


Evaluate:

`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`


Evaluate:

`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`


Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`


Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`


Choose the correct option from the given alternatives :

If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then


Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`


Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`


Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`


Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`


Evaluate the following integrals:

`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`


Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______


Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______


Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`


Solve the following : `int_2^3 x/(x^2 - 1)*dx`


`int_1^9 (x + 1)/sqrt(x)  "d"x` =


Choose the correct alternative:

`int_4^9 ("d"x)/sqrt(x)` =


If `int_1^"a" (3x^2 + 2x + 1)  "d"x` = 11, find the real value of a


Evaluate `int_0^1 "e"^(x^2)*"x"^3  "d"x`


Evaluate the following definite intergrals. 

`int_1^3 logx* dx`


Solve the following.

`int_1^3x^2 logx dx`


Evaluate:

`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following definite intergral:

`int_(-2)^3 1/(x + 5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×