हिंदी

Show that: ∫0π4log(1+tanx)dx=π8log2 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

 Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`

योग

उत्तर

Let I = `int _0^(pi/4) log (1 + tan x) dx`

= `int _0^(pi/4) log {1+ tan(pi/4 - x)}dx`   ......`(∵  int _0^a f(x) dx = int  f (a  - x) dx) `

= `int _0^(pi/4) log {1 + ((tan pi/4 - tanx))/(1 + tan pi/4 tanx}}dx`

= `int _0^(pi/4) {1 + (1 - tanx)/(1 + tanx)} dx`

 = `int _0^(pi/4) log{(1 + tanx + 1 - tanx)/(1 + tanx)} dx`

= `int_0^(pi/4) log(2/(1 + tanx)) dx`

= `int_0^(pi/4) {log2 - log(1 + tanx)} dx`

= `int_0^(pi/4) log  2  dx  - int_0^(pi/4) log(1 + tanx) dx`

I = `log2[x]_0^(pi/4) - I`

2I = `log2[pi/4 - 0]`

I = `pi/8 . log2`

∴ `int_0^(pi/4) log(1 + tanx)dx = pi/8log2`

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2021-2022 (March) Set 1

संबंधित प्रश्न

Evaluate:

`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`


Evaluate:

`int_0^(pi/2) sqrt(cos x) sin^3x * dx`


Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`


Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`


Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`


Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`


Evaluate the following : `int_0^pi  (sin^-1x + cos^-1x)^3 sin^3x*dx`


Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`


Evaluate the following : `int_(-2)^(3) |x - 2|*dx`


Evaluate the following definite integral:

`int_4^9 (1)/sqrt(x)*dx`


Evaluate the following definite integral:

`int_(-2)^3 (1)/(x + 5)*dx`


Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`


Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`


Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following definite integral:

`int_1^3 logx.dx`


Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`


Choose the correct alternative :

`int_2^3 x/(x^2 - 1)*dx` =


Choose the correct alternative :

If `int_0^"a" 3x^2*dx` = 8, then a = ?


Choose the correct alternative :

`int_(-7)^7 x^3/(x^2 + 7)*dx` =


Fill in the blank : `int_2^3 x^4*dx` = _______


Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`


Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`


Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`


Solve the following : `int_2^3 x/(x^2 - 1)*dx`


Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`


Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`


Choose the correct alternative:

`int_2^3 x^4  "d"x` =


Evaluate `int_2^3 x/((x + 2)(x + 3))  "d"x`


`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?


`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?


Evaluate the following definite integrals:  `int_-2^3 1/(x + 5) *dx`


Solve the following.

`int_1^3x^2 logx dx`


`int_0^1 1/(2x + 5)dx` = ______


Evaluate the following definite integral:

`int_4^9 1/sqrt(x)dx`


Evaluate:

`int_0^1 |x| dx`


Evaluate the following definite integral:

`int_-2^3 1/(x+5) *dx`


`int_a^b f(x) dx = int_a^b f (t) dt`


Solve the following:

`int_0^1e^(x^2)x^3dx`


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`


Solve the following.

`int_1^3x^2logx  dx`


Evaluate the integral.

`int_-9^9 x^3/(4-x^2) dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Solve the following.

`int_0^1e^(x^2) x^3 dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)dx`


Solve the following.

`int_1^3x^2 logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×