Advertisements
Advertisements
प्रश्न
Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`
उत्तर
Let I = `int _0^(pi/4) log (1 + tan x) dx`
= `int _0^(pi/4) log {1+ tan(pi/4 - x)}dx` ......`(∵ int _0^a f(x) dx = int f (a - x) dx) `
= `int _0^(pi/4) log {1 + ((tan pi/4 - tanx))/(1 + tan pi/4 tanx}}dx`
= `int _0^(pi/4) {1 + (1 - tanx)/(1 + tanx)} dx`
= `int _0^(pi/4) log{(1 + tanx + 1 - tanx)/(1 + tanx)} dx`
= `int_0^(pi/4) log(2/(1 + tanx)) dx`
= `int_0^(pi/4) {log2 - log(1 + tanx)} dx`
= `int_0^(pi/4) log 2 dx - int_0^(pi/4) log(1 + tanx) dx`
I = `log2[x]_0^(pi/4) - I`
2I = `log2[pi/4 - 0]`
I = `pi/8 . log2`
∴ `int_0^(pi/4) log(1 + tanx)dx = pi/8log2`
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`
Evaluate:
`int_0^(pi/2) sqrt(cos x) sin^3x * dx`
Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`
Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`
Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`
Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`
Evaluate the following : `int_0^pi (sin^-1x + cos^-1x)^3 sin^3x*dx`
Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`
Evaluate the following : `int_(-2)^(3) |x - 2|*dx`
Evaluate the following definite integral:
`int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite integral:
`int_(-2)^3 (1)/(x + 5)*dx`
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
Choose the correct alternative :
If `int_0^"a" 3x^2*dx` = 8, then a = ?
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
Fill in the blank : `int_2^3 x^4*dx` = _______
Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`
Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`
Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`
Choose the correct alternative:
`int_2^3 x^4 "d"x` =
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?
`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Solve the following.
`int_1^3x^2 logx dx`
`int_0^1 1/(2x + 5)dx` = ______
Evaluate the following definite integral:
`int_4^9 1/sqrt(x)dx`
Evaluate:
`int_0^1 |x| dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
`int_a^b f(x) dx = int_a^b f (t) dt`
Solve the following:
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`
Solve the following.
`int_1^3x^2logx dx`
Evaluate the integral.
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Solve the following.
`int_0^1e^(x^2) x^3 dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Solve the following.
`int_1^3x^2 logx dx`