Advertisements
Advertisements
प्रश्न
`int_a^b f(x) dx = int_a^b f (t) dt`
विकल्प
True
False
उत्तर
The statement is true.
Explanation:
The equality holds because the integral of a function over an interval [a,b] does not depend on the variable used to represent the function's input. Whether we use x, t, or any other symbol, the integral's value remains the same as long as the function f and the limits of integration a and b are unchanged. This is a property of definite integrals, reflecting that they calculate the net area under the curve of f from a to b, which is independent of the variable of integration's notation.
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`
Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`
Evaluate the following : `int_0^pi x sin x cos^2x*dx`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Choose the correct option from the given alternatives :
If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then
Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`
Choose the correct alternative :
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`
`int_1^2 x^2 "d"x` = ______
`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.
`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?
Evaluate the following definite integrats:
`int_4^9 1/sqrt x dx`
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Evaluate the following definite intergral:
`int_1^3 logx dx`
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite intergral:
`int _1^3logxdx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite intergral:
`int_1^3 log x·dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) · dx`
Solve the following.
`int_1^3x^2 logx dx`