Advertisements
Advertisements
प्रश्न
Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`
उत्तर
`int_0^4 (1)/sqrt(4x - x^2)*dx`
= `int_0^4 (1)/sqrt(4 - (x^2 - 4x + 4))*dx`
= `int_0^4 (1)/sqrt(2^2 - (x - 2)^2)*dx`
= `[sin^-1 ((x - 2)/2)]_0^4`
= `sin^-1((4 - 2)/2)- sin^-1 ((0 - 2)/2)`
= sin–1 1 –sin–1 (– 1)
= 2 sin–1 1 ...[∵ sin–1 (– x) = – sin–1 x]
= `2(pi/2)`
= `pi`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`
Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`
Evaluate the following integrals:
`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`
Choose the correct alternative :
`int_(-9)^9 x^3/(4 - x^2)*dx` =
Choose the correct alternative :
`int_"a"^"b" f(x)*dx` =
Fill in the blank : `int_0^2 e^x*dx` = ________
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`
Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
Prove that: `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`. Hence find `int_0^(pi/2) sin^2x "d"x`
`int_0^"a" 4x^3 "d"x` = 81, then a = ______
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
Evaluate `int_1^2 (3x)/((9x^2 - 1)) "d"x`
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
Evaluate the following definite integrats:
`int_4^9 1/sqrt x dx`
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
`int_0^1 1/(2x + 5)dx` = ______
Evaluate the following definite intergral:
`int_1^3logxdx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite intergral:
`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`