हिंदी

Evaluate : ∫0π4sin2xsin4x+cos4x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`

योग

उत्तर

Let I = `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`

= `int_0^(pi//4) (2sinx cosx)/(sin^4x + cos^4x)*dx`
Dividing each term by cos4x, we get

I = `int_0^(pi//4) ((2 sinxcancelcosx)/(cos^4x))/((sin^4x)/(cancelcos^4x )+ 1)*dx`

= `int_0^(pi//4) (2sinx/cosx*1/cos^2)/((tan^2x)^2 + 1)*dx`

 = `int_0^(pi//4) (2tanx*sec^2)/ (tan^4 x+ 1)dx`
Put tan2x = t
∴ 2tanx sec2x·dx = dt
When x = 0, t = tan20 = 0

When x = `pi/(4), t = tan^2  pi/(4)` = 1

∴ I = `int_0^1 1/(1 + t^2)*dt`

∴ I = `int_0^1 [tan^-1t]_0^1`

= `[tan^-1 t]_0^1`

= tan–11 – tan–10

= I =  `pi/(4) - 0`

= I =  `pi/(4)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Definite Integration - Exercise 4.2 [पृष्ठ १७२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Definite Integration
Exercise 4.2 | Q 2.03 | पृष्ठ १७२

संबंधित प्रश्न

Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`


Evaluate:

`int_0^(pi/4) sqrt(1 + sin 2x)*dx`


Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`


Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`


Evaluate : `int_0^(pi/4) sec^4x*dx`


Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`


`int_2^3 dx/(x(x^3 - 1))` = ______.


Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`


Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`


Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`


Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`


Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k


Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`


Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.


Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`


Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`


Choose the correct alternative :

`int_0^2 e^x*dx` =


State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`


Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`


Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`


Solve the following : `int_2^4 x/(x^2 + 1)*dx`


Solve the following : `int_0^1 (1)/(2x - 3)*dx`


`int_1^2 ("e"^(1/x))/(x^2)  "d"x` =


Choose the correct alternative:

`int_4^9 ("d"x)/sqrt(x)` =


State whether the following statement is True or False:

`int_0^"a" 3x^2  "d"x` = 27, then a = 2.5


Evaluate `int_2^3 x/((x + 2)(x + 3))  "d"x`


Evaluate `int_1^3 log x  "d"x`


`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)  dx`


Solve the following `int_1^3 x^2log x dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.


Solve the following.

`int_1^3 x^2 log x dx `


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/ ((9x^2 -1)) dx`


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Solve the following.

`int_1^3x^2logx  dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following definite integral:

`int_-2^3 1/(x+5).dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×