मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate : ∫0π4sin2xsin4x+cos4x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`

बेरीज

उत्तर

Let I = `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`

= `int_0^(pi//4) (2sinx cosx)/(sin^4x + cos^4x)*dx`
Dividing each term by cos4x, we get

I = `int_0^(pi//4) ((2 sinxcancelcosx)/(cos^4x))/((sin^4x)/(cancelcos^4x )+ 1)*dx`

= `int_0^(pi//4) (2sinx/cosx*1/cos^2)/((tan^2x)^2 + 1)*dx`

 = `int_0^(pi//4) (2tanx*sec^2)/ (tan^4 x+ 1)dx`
Put tan2x = t
∴ 2tanx sec2x·dx = dt
When x = 0, t = tan20 = 0

When x = `pi/(4), t = tan^2  pi/(4)` = 1

∴ I = `int_0^1 1/(1 + t^2)*dt`

∴ I = `int_0^1 [tan^-1t]_0^1`

= `[tan^-1 t]_0^1`

= tan–11 – tan–10

= I =  `pi/(4) - 0`

= I =  `pi/(4)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Definite Integration - Exercise 4.2 [पृष्ठ १७२]

APPEARS IN

संबंधित प्रश्‍न

Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`


Evaluate:

`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`


Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`


Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`


Evaluate : `int_0^(pi/4) sec^4x*dx`


Evaluate:

`int_0^1 sqrt((1 - x)/(1 + x)) * dx`


Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`


Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`


Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`


Choose the correct option from the given alternatives : 

If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to


Choose the correct option from the given alternatives :

The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is


Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`


Evaluate the following:

`int_0^pi x/(1 + sin^2x) * dx`


Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`


Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`


Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k


Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.


Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`


Choose the correct alternative :

`int_2^3 x^4*dx` =


Choose the correct alternative :

`int_"a"^"b" f(x)*dx` =


Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______


Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`


Solve the following:

`int_0^1 e^(x^2)*x^3dx`


Solve the following : `int_2^3 x/(x^2 - 1)*dx`


`int_0^1 sqrt((1 - x)/(1 +  x))  "d"x` =


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`


Prove that: `int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`


`int_1^2 x^2  "d"x` = ______


`int_0^"a" 4x^3  "d"x` = 81, then a = ______


State whether the following statement is True or False:

`int_0^"a" 3x^2  "d"x` = 27, then a = 2.5


Evaluate `int_1^2 (3x)/((9x^2 - 1))  "d"x`


Evaluate `int_0^"a" x^2 ("a" - x)^(3/2)  "d"x`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


`int_0^1 1/(2x + 5)dx` = ______


Evaluate the following definite integral:

`int_4^9 1/sqrt(x)dx`


Solve the following:

`int_0^1e^(x^2)x^3dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Evaluate the following definite intergral:

`int_(-2)^3 1/(x + 5)dx`


Solve the following.

`int_1^3x^2log x  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×