Advertisements
Advertisements
प्रश्न
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
उत्तर
Let I = `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
= `int_0^(pi//4) (2sinx cosx)/(sin^4x + cos^4x)*dx`
Dividing each term by cos4x, we get
I = `int_0^(pi//4) ((2 sinxcancelcosx)/(cos^4x))/((sin^4x)/(cancelcos^4x )+ 1)*dx`
= `int_0^(pi//4) (2sinx/cosx*1/cos^2)/((tan^2x)^2 + 1)*dx`
= `int_0^(pi//4) (2tanx*sec^2)/ (tan^4 x+ 1)dx`
Put tan2x = t
∴ 2tanx sec2x·dx = dt
When x = 0, t = tan20 = 0
When x = `pi/(4), t = tan^2 pi/(4)` = 1
∴ I = `int_0^1 1/(1 + t^2)*dt`
∴ I = `int_0^1 [tan^-1t]_0^1`
= `[tan^-1 t]_0^1`
= tan–11 – tan–10
= I = `pi/(4) - 0`
= I = `pi/(4)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`
Evaluate:
`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`
Evaluate : `int_0^(pi/4) sec^4x*dx`
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`
Choose the correct option from the given alternatives :
If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`
Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`
Choose the correct alternative :
`int_2^3 x^4*dx` =
Choose the correct alternative :
`int_"a"^"b" f(x)*dx` =
Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______
Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`
Solve the following:
`int_0^1 e^(x^2)*x^3dx`
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Prove that: `int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
`int_1^2 x^2 "d"x` = ______
`int_0^"a" 4x^3 "d"x` = 81, then a = ______
State whether the following statement is True or False:
`int_0^"a" 3x^2 "d"x` = 27, then a = 2.5
Evaluate `int_1^2 (3x)/((9x^2 - 1)) "d"x`
Evaluate `int_0^"a" x^2 ("a" - x)^(3/2) "d"x`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
`int_0^1 1/(2x + 5)dx` = ______
Evaluate the following definite integral:
`int_4^9 1/sqrt(x)dx`
Solve the following:
`int_0^1e^(x^2)x^3dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following definite intergral:
`int_(-2)^3 1/(x + 5)dx`
Solve the following.
`int_1^3x^2log x dx`