Advertisements
Advertisements
प्रश्न
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
उत्तर
Let I = `int_0^k 1/(2 + 8x^2)*dx`
= `(1)/(8) int_0^k 1/(x^2 + (1/2)^2)*dx`
= `(1)/(8) xx (1)/((1/2))[tan^-1 (x/((1/2)))]_0^k`
= `(1)/(4)[tan^-1 2x]_0^k`
= `(1)/(4)[tan^-1 2k - tan^-1 0]`
= `(1)/(4) tan^-1 2k`
∴ I = `pi/(16) "gives" (1)/(4) tan^-1 2k = pi/(16)`
∴ `tan^-1 2k = pi/(4)`
∴ 2k = `tan pi/(4)` = 1
∴ k = `(1)/(2)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`
Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
Choose the correct option from the given alternatives :
`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Evaluate the following : `int_(-2)^(3) |x - 2|*dx`
Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
Choose the correct alternative :
`int_2^3 x^4*dx` =
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`
Solve the following:
`int_1^3 x^2 log x*dx`
Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`
Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`
Solve the following : `int_(-4)^(-1) (1)/x*dx`
Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`
Prove that: `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`. Hence find `int_0^(pi/2) sin^2x "d"x`
Prove that: `int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
Choose the correct alternative:
`int_4^9 ("d"x)/sqrt(x)` =
Evaluate `int_1^2 (3x)/((9x^2 - 1)) "d"x`
By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Solution: Let I = `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`
∴ x + 3 = A(x + 2) + B.x
∴ A = `square`, B = `square`
∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`
∴ I = `[square log x + square log(x + 2)]_1^2`
∴ I = `square`
`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
Solve the following.
`int_1^3 x^2 logx dx`
`int_0^1 1/(2x + 5)dx` = ______
Evaluate:
`int_0^1 |x| dx`
Solve the following.
`int_0 ^1 e^(x^2) * x^3`dx
Evaluate the following definite intergral:
`int_1^2 (3x)/ ((9x^2 -1)) dx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite intergral:
`int_1^3 log x·dx`
Evaluate the following definite intergral.
`int_1^2 (3x)/((9x^2 - 1))dx`