मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate the following : If ∫0k12+8x2⋅dx=π16, find k - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k

बेरीज

उत्तर

Let I = `int_0^k 1/(2 + 8x^2)*dx`

= `(1)/(8) int_0^k 1/(x^2 + (1/2)^2)*dx`

= `(1)/(8) xx (1)/((1/2))[tan^-1 (x/((1/2)))]_0^k`

= `(1)/(4)[tan^-1 2x]_0^k`

= `(1)/(4)[tan^-1 2k - tan^-1 0]`

= `(1)/(4) tan^-1 2k`

∴ I = `pi/(16)  "gives" (1)/(4) tan^-1 2k = pi/(16)`

∴ `tan^-1 2k = pi/(4)`

∴ 2k = `tan  pi/(4)` = 1

∴ k = `(1)/(2)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Definite Integration - Miscellaneous Exercise 4 [पृष्ठ १७७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 4 Definite Integration
Miscellaneous Exercise 4 | Q 4.2 | पृष्ठ १७७

संबंधित प्रश्‍न

Evaluate : `int_0^(pi/4) sin^4x*dx`


Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`


Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`


Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`


Choose the correct option from the given alternatives :

`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Evaluate the following : `int_(-2)^(3) |x - 2|*dx`


Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`


Choose the correct alternative : 

`int_(-2)^3 dx/(x + 5)` =


Choose the correct alternative :

`int_2^3 x^4*dx` =


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`


State whether the following is True or False :  `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`


Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`


Solve the following:

`int_1^3 x^2 log x*dx`


Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`


Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`


Solve the following : `int_(-4)^(-1) (1)/x*dx`


Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`


Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`


Prove that: `int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)  "d"x`. Hence find `int_0^(pi/2) sin^2x  "d"x` 


Prove that: `int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`


Choose the correct alternative:

`int_4^9 ("d"x)/sqrt(x)` =


Evaluate `int_1^2 (3x)/((9x^2 - 1))  "d"x`


By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2))  "d"x`

Solution: Let I = `int_1^2 (x + 3)/(x(x + 2))  "d"x`

Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`

∴ x + 3 = A(x + 2) + B.x

∴ A = `square`, B = `square`

∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`

∴ I = `[square log x + square log(x + 2)]_1^2`

∴ I = `square`


`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?


Evaluate the following definite intergrals. 

`int_1^3 logx* dx`


Evaluate the following definite integral :

`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`


Solve the following.

`int_1^3 x^2 logx  dx`


`int_0^1 1/(2x + 5)dx` = ______


Evaluate:

`int_0^1 |x| dx`


Solve the following.

`int_0 ^1 e^(x^2) * x^3`dx


Evaluate the following definite intergral:

`int_1^2 (3x)/ ((9x^2 -1)) dx`


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following definite intergral:

`int_1^3 log x·dx`


Evaluate the following definite intergral.

`int_1^2 (3x)/((9x^2 - 1))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×