Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_(-2)^(3) |x - 2|*dx`
उत्तर
|x – 2| = 2 – x, if x < 2
= x – 2, if x ≥ 2
∴ `int_(-2)^(3) |x - 2|*dx = int_(-2)^(3) |x - 2|*dx + int_(2)^(3)|x - 2|*dx`
= `int_(-2)^(3) (2 - x)*dx + int_(2)^(3) (x - 2)*dx`
= `[(2 - x)^2/((- 2))]_(-2)^(2) + [(x - 2)^2/2]_3^2`
= `[0 - (4)^2/(- 2)^2] + [1^2/2 - 0^2/2]`
= `8 + (1)/(2)`
= `(17)/(2)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`
Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`
Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`
Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`
Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`
Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
Fill in the blank : `int_0^2 e^x*dx` = ________
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`
Solve the following : `int_2^4 x/(x^2 + 1)*dx`
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
`int_1^2 x^2 "d"x` = ______
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2)) "d"x`
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) dx`
Evaluate the following definite integral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Solve the following.
`int_1^3 x^2 log x dx `
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtxdx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the integral.
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`