Advertisements
Advertisements
प्रश्न
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
उत्तर
Let I = `int_1^2 (3x)/((9x^2 - 1))*dx`
= `3int_1^2 x/(9x^2 - 1)*dx`
Put 9x2 – 1 = t
∴ 18x · dx = dt
∴ x · dx = `(1)/(18)*dx`
When x = 1, t = 9(1)2 – 1 = 8
When x = 2, t = 9(2)2 – 1 = 35
∴ I = `3int_8^35 (1)/"t"*"dt"/(18)`
= `(1)/(6) int_8^35 "dt"/"t"`
= `(1)/(6)[log|"t"|]_8^35`
= `(1)/(6) (log 35 - log 8)`
∴ I = `(1)/(6)log(35/8)`
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
Solve the following : `int_2^3 x/(x^2 + 1)*dx`
Solve the following : `int_1^2 x^2*dx`
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`
Solve the following.
`int_0^1e^(x^2) x^3 dx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`