Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`
उत्तर
Let I = `int_0^a 1/(a^2 + ax - x^2)*dx`
a2 + ax – x2 = `a^2 - (x^2 - ax + a^2/4) + a^2/(4)`
= `(5a^2)/(4) - (x - a/2)^2`
= `(sqrt(5a)/2)^2 - (x - a/2)^2`
∴ I = `int_0^a dx/(((sqrt(5)a)/2)^2 - (x - a/2)^2)`
= `(1)/((2 xx sqrt(5)a)/2)*[log|((sqrt(5)a)/2 + x - a/2)/((sqrt(5)a)/(2) - x + a/2)|]_0^a`
= `(1)/(sqrt(5)a)[log|((sqrt(5)a)/2 + a - a/2)/((sqrt(5)a)/(2) - a + a/2)| - log |((sqrt(5)a)/2 - a/2)/((sqrt(5)a)/(2) + a/2)|]`
= `(1)/(sqrt(5)a)[log |(sqrt(5)/2 + 1/2)/(sqrt(5)/2 - 1/2)| - log |(sqrt(5)/2 - 1/2)/(sqrt(5)/2 + 1/2)|]`
= `(1)/(sqrt(5)a)[log|((sqrt(5) + 1)/(sqrt(5) - 1))|- log|((sqrt(5) - 1)/(sqrt(5) + 1))|]`
= `(1)/(sqrt(5)a) log|(sqrt(5) + 1)/(sqrt(5) - 1) xx (sqrt(5) + 1)/(sqrt(5) - 1)|`
= `(1)/(sqrt(5)a) log [((sqrt(5) + 1)/(sqrt(5) - 1))^2]`
= `(1)/(sqrt(5)a) log |(5 + 1 + 2sqrt(5))/(5 + 1 - 2sqrt(5))|`
= `(1)/(sqrt(5)a) log (6 + 2sqrt(5))/(6 - 2sqrt(5))`
= `(1)/(sqrt(5)a) log|(6 + 2sqrt(5))/(6 - 2sqrt(5)) xx (6 + 2sqrt(5))/(6 + 2sqrt(5))|`
= `(1)/(sqrt(5)a) log|(36 + 20 + 24sqrt(5))/(36 - 20)|`
= `(1)/(sqrt(5)a) log |(56 + 24sqrt(5))/(16)|`
= `(1)/(sqrt(5)a) log|(7 + 3sqrt(5))/(2)|`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`
Evaluate:
`int_0^(pi/4) sqrt(1 + sin 2x)*dx`
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Evaluate the following : `int_0^pi (sin^-1x + cos^-1x)^3 sin^3x*dx`
Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`
Evaluate the following integrals:
`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`
Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`
Choose the correct alternative :
If `int_0^"a" 3x^2*dx` = 8, then a = ?
Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______
Solve the following:
`int_1^3 x^2 log x*dx`
Solve the following:
`int_0^1 e^(x^2)*x^3dx`
Solve the following : `int_1^2 x^2*dx`
Choose the correct alternative:
`int_2^3 x/(x^2 - 1) "d"x` =
`int_1^2 x^2 "d"x` = ______
State whether the following statement is True or False:
`int_0^"a" 3x^2 "d"x` = 27, then a = 2.5
State whether the following statement is True or False:
`int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"("a" - x) "d"x`
Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x) "d"x`
If `int_0^"a" (2x + 1) "d"x` = 2, find a
By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Solution: Let I = `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`
∴ x + 3 = A(x + 2) + B.x
∴ A = `square`, B = `square`
∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`
∴ I = `[square log x + square log(x + 2)]_1^2`
∴ I = `square`
`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?
Evaluate the following definite integrats:
`int_4^9 1/sqrt x dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) dx`
Solve the following `int_1^3 x^2log x dx`
Evaluate the following definite intergral:
`int_1^3 log xdx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
`int_0^4 1/sqrt(4x - x^2)dx` = ______.
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) · dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite intergral:
`int_(-2)^3 1/(x + 5)dx`