Advertisements
Advertisements
प्रश्न
`int_1^2 x^2 "d"x` = ______
उत्तर
`7/3`
APPEARS IN
संबंधित प्रश्न
Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`
Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`
Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
Choose the correct option from the given alternatives :
Let I1 = `int_e^(e^2) dx/logx "and" "I"_2 = int_1^2 e^x/x*dx`, then
Choose the correct option from the given alternatives :
`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`
`int_1^2 ("e"^(1/x))/(x^2) "d"x` =
Prove that: `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`. Hence find `int_0^(pi/2) sin^2x "d"x`
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
Evaluate `int_1^2 (3x)/((9x^2 - 1)) "d"x`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Solve the following.
`int_1^3 x^2 log x dx `
The principle solutions of the equation cos θ = `1/2` are ______.
Evaluate the following definite intergral:
`int_1^3logxdx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Evaluate the integral.
`int_-9^9 x^3/(4-x^2) dx`