मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate : ∫0π2cosx(1+sinx)(2+sinx)⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`

बेरीज

उत्तर

Let I = `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Put sin x = t
∴ cos x·dx = dt

When x = `pi/(2), t = sin  pi/(2)` = 1

When x = 0, t = sin 0 = 0

∴ I = `int_0^1 dt/((1 + t)(2 + t)`

= `int_0^1((2 + t) - (1 + t))/((1 + t)(2 + t))*dt`

= `int_0^1[1/(1 + t) - 1/(2 + t)]*dt`

= `int_0^1 1/(1 + t)*dt - int_0^1 1/(2 + t)*dt`

= `[log |1 + t|]_0^1 - [log|2 + t|]_0^1`
= [log(1 + 1) – log(1 + 0)] – [log(2 + 1) – log(2 + 0)]
= log 2 – log 3 + log 2    ...[∵ log 1 = 0]

= `log ((2 xx 2)/3)`

= `log(4/3)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Definite Integration - Exercise 4.2 [पृष्ठ १७२]

APPEARS IN

संबंधित प्रश्‍न

Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`


Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`


Evaluate : `int_0^(pi/4) sec^4x*dx`


Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`


`int_2^3 dx/(x(x^3 - 1))` = ______.


Choose the correct option from the given alternatives :

If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then


Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`


Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k


Evaluate the following definite integral:

`int_4^9 (1)/sqrt(x)*dx`


Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`


Evaluate the following definite integral:

`int_1^3 logx.dx`


Choose the correct alternative :

If `int_0^"a" 3x^2*dx` = 8, then a = ?


State whether the following is True or False :  `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`


Solve the following:

`int_1^3 x^2 log x*dx`


Solve the following : `int_4^9 (1)/sqrt(x)*dx`


Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`


`int_1^9 (x + 1)/sqrt(x)  "d"x` =


`int_0^1 sqrt((1 - x)/(1 +  x))  "d"x` =


Choose the correct alternative:

`int_2^3 x^4  "d"x` =


`int_1^2 x^2  "d"x` = ______


`int_0^"a" 4x^3  "d"x` = 81, then a = ______


State whether the following statement is True or False:

`int_0^"a" 3x^2  "d"x` = 27, then a = 2.5


State whether the following statement is True or False:

`int_0^1 1/(2x + 5)  "d"x = log(7/5)`


Evaluate `int_1^3 log x  "d"x`


Solve the following `int_1^3 x^2log x dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x + 5)dx`


`int_0^4 1/sqrt(4x - x^2)dx` = ______.


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2-1 )`dx


Evaluate the following definite integral:

`int_-2^3 1/(x+5) *dx`


Evaluate the following definite integral:

`int_1^3 logx  dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5) · dx`


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)dx`


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Evaluate the following definite intergral:

`int_(1)^3logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×