Advertisements
Advertisements
प्रश्न
Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
उत्तर
Let I = `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Put sin x = t
∴ cos x·dx = dt
When x = `pi/(2), t = sin pi/(2)` = 1
When x = 0, t = sin 0 = 0
∴ I = `int_0^1 dt/((1 + t)(2 + t)`
= `int_0^1((2 + t) - (1 + t))/((1 + t)(2 + t))*dt`
= `int_0^1[1/(1 + t) - 1/(2 + t)]*dt`
= `int_0^1 1/(1 + t)*dt - int_0^1 1/(2 + t)*dt`
= `[log |1 + t|]_0^1 - [log|2 + t|]_0^1`
= [log(1 + 1) – log(1 + 0)] – [log(2 + 1) – log(2 + 0)]
= log 2 – log 3 + log 2 ...[∵ log 1 = 0]
= `log ((2 xx 2)/3)`
= `log(4/3)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`
Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`
Evaluate : `int_0^(pi/4) sec^4x*dx`
Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`
`int_2^3 dx/(x(x^3 - 1))` = ______.
Choose the correct option from the given alternatives :
If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then
Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Evaluate the following definite integral:
`int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Choose the correct alternative :
If `int_0^"a" 3x^2*dx` = 8, then a = ?
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
Solve the following:
`int_1^3 x^2 log x*dx`
Solve the following : `int_4^9 (1)/sqrt(x)*dx`
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
Choose the correct alternative:
`int_2^3 x^4 "d"x` =
`int_1^2 x^2 "d"x` = ______
`int_0^"a" 4x^3 "d"x` = 81, then a = ______
State whether the following statement is True or False:
`int_0^"a" 3x^2 "d"x` = 27, then a = 2.5
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
Evaluate `int_1^3 log x "d"x`
Solve the following `int_1^3 x^2log x dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x + 5)dx`
`int_0^4 1/sqrt(4x - x^2)dx` = ______.
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
Evaluate the following definite integral:
`int_1^3 logx dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) · dx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`