Advertisements
Advertisements
प्रश्न
Evaluate : `int_0^(pi/4) sec^4x*dx`
उत्तर
Let I = `int_0^(pi/4) sec^4x*dx`
= `int_0^(pi/4) sec^2x*sec^2x*dx`
= `int_0^(pi/4) (1 + tan^2x)sec^2x*dx`
Put tan x = t
∴ sec2x·dx = dt
When x = 0, t = tan 0 = 0
When x = `pi/(4), t = tan pi/(4)` = 1
∴ I = `int_0^1 (1 + t^2)*dt`
= `[t + t^3/(3)]_0^1`
= `1+ (1)/(3) - 0`
= `(4)/(3)`.
APPEARS IN
संबंधित प्रश्न
Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`
Evaluate:
`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`
Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
Choose the correct option from the given alternatives :
If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to
Choose the correct option from the given alternatives :
Let I1 = `int_e^(e^2) dx/logx "and" "I"_2 = int_1^2 e^x/x*dx`, then
Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`
Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`
Evaluate the following integrals:
`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
Fill in the blank : `int_2^3 x^4*dx` = _______
Solve the following:
`int_0^1 e^(x^2)*x^3dx`
Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
Solve the following : `int_2^4 x/(x^2 + 1)*dx`
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
State whether the following statement is True or False:
`int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"("a" - x) "d"x`
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
Evaluate the following definite integrats:
`int_4^9 1/sqrt x dx`
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Evaluate the following definite intergral:
`int_1^3 logx dx`
Evaluate the following integrals:
`int_-9^9 (x^3)/(4 - x^2) dx`
`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.
Evaluate:
`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`
Evaluate:
`int_0^1 |x| dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Solve the following.
`int_1^3x^2 logx dx`
Solve the following.
`int_1^3 x^2 log x dx`