मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate : ∫0π4sec4x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate : `int_0^(pi/4) sec^4x*dx`

बेरीज

उत्तर

Let I = `int_0^(pi/4) sec^4x*dx`

= `int_0^(pi/4) sec^2x*sec^2x*dx`

= `int_0^(pi/4) (1 + tan^2x)sec^2x*dx`
Put tan x = t
∴ sec2x·dx = dt
When x = 0, t = tan 0 = 0

When x = `pi/(4), t = tan  pi/(4)` = 1

∴ I = `int_0^1 (1 + t^2)*dt`

= `[t + t^3/(3)]_0^1`

= `1+ (1)/(3) - 0`

= `(4)/(3)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Definite Integration - Exercise 4.2 [पृष्ठ १७२]

APPEARS IN

संबंधित प्रश्‍न

 Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`


Evaluate:

`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`


Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`


Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`


Evaluate the following:

`int_0^(pi/2) log(tanx)dx`


Evaluate the following :  `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`


Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`


Choose the correct option from the given alternatives : 

If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to


Choose the correct option from the given alternatives :

Let I1 = `int_e^(e^2) dx/logx  "and"  "I"_2 = int_1^2 e^x/x*dx`, then


Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`


Evaluate the following:

`int_0^pi x/(1 + sin^2x) * dx`


Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`


Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`


Evaluate the following integrals:

`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`


Choose the correct alternative :

`int_2^3 x/(x^2 - 1)*dx` =


Fill in the blank : `int_2^3 x^4*dx` = _______


Solve the following:

`int_0^1 e^(x^2)*x^3dx`


Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`


Solve the following : `int_2^4 x/(x^2 + 1)*dx`


State whether the following statement is True or False:

`int_0^1 1/(2x + 5)  "d"x = log(7/5)`


State whether the following statement is True or False: 

`int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"("a" - x)  "d"x`


If `int_1^"a" (3x^2 + 2x + 1)  "d"x` = 11, find the real value of a


`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?


`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?


`int_2^3 "x"/("x"^2 - 1)` dx = ____________.


Evaluate the following definite integrats: 

`int_4^9 1/sqrt x dx`


Evaluate the following definite integrals:  `int_-2^3 1/(x + 5) *dx`


Evaluate the following definite intergral:

`int_1^3 logx  dx`


Evaluate the following integrals:

`int_-9^9 (x^3)/(4 - x^2) dx`


`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.


Evaluate:

`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`


Evaluate:

`int_0^1 |x| dx`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)dx`


Solve the following.

`int_1^3x^2 logx  dx`


Solve the following.

`int_1^3 x^2 log x  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×