Advertisements
Advertisements
प्रश्न
Solve the following:
`int_0^1 e^(x^2)*x^3dx`
उत्तर
Let I = `int_0^1 e^(x^2)*x^3dx`
= `int_0^1 e^(x^2)*x^2*xdx`
Put x2 = t
∴ 2x·dx = dt
∴ x·dx = `(1)/(2)*"dt"`
When x = 0, t = 0
When x = 1, t = 1
∴ I = `(1)/(2) int_0^1 e^"t"*"tdt"`
= `(1)/(2){["t" int e^"t"*"dt"]_0^1 - int_0^1[d/"dt" ("t") int e^"t"*"dt"]"dt"}`
= `(1)/(2) [["t"*e^"t"]_0^1 - int_0^1 1*e^"t" "dt"]`
= `(1)/(2){(1*e^1 - 0) - [e^"t"]_0^1}`
= `(1)/(2)[e - (e^1 - e^0)]`
= `(1)/(2)(e - e + 1)`
∴ I = `(1)/(2)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`
Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
Solve the following : `int_(-4)^(-1) (1)/x*dx`
Solve the following : `int_2^4 x/(x^2 + 1)*dx`
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"c""f"(x) "d"x + int_"c"^"b" "f"(x) "d"x`, where a < c < b
Choose the correct alternative:
`int_(-2)^3 1/(x + 5) "d"x` =
Evaluate:
`int_1^2 1/(x^2 + 6x + 5) dx`
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
Evaluate `int_0^1 "e"^(x^2)*"x"^3 "d"x`
`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?
`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?
Evaluate the following integrals:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`