Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
`int_(-2)^3 1/(x + 5) "d"x` =
पर्याय
`log (3/8)`
`log (8/3)`
`log (8/5)`
0
उत्तर
`log (8/3)`
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`
Evaluate : `int_0^(pi/4) sec^4x*dx`
Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`
Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
Choose the correct option from the given alternatives :
If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to
Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`
Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x) "d"x`
`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_1^3logxdx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) · dx`
Evaluate the integral.
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite intergral:
`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`