Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`
उत्तर
Let I = `int_1^oo 1/(sqrt(x)(1 + x))*dx`
Put x = tan2t
∴ dx = `[2 tan t d/dt (tan t)]*dt`
= 2 tan t sec2t·dt
When x = `oo, tan^2t = oo therefore t = pi/(2)`
When x = `1, tan^2t = 1 therefore t = pi/(4)`
∴ I = `int_(pi/4)^(pi/2) (2tantsec^2t)/(sqrt(tan^2t) (1 + tan^2t))*dt`
= `int_(pi/4)^(pi/2) (2sec^2t)/(sec^2t)*dt`
= `2 int_(pi/4)^(pi/2) 1*dt = 2[t]_(pi/4)^(pi/2)`
= `2[pi/2 - pi/4]`
= `2[pi/4]`
= `pi/(2)`.
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int_0^(pi/4) sqrt(1 + sin 2x)*dx`
Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`
Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`
Choose the correct alternative :
`int_(-9)^9 x^3/(4 - x^2)*dx` =
Choose the correct alternative :
`int_0^2 e^x*dx` =
Choose the correct alternative :
`int_"a"^"b" f(x)*dx` =
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"c""f"(x) "d"x + int_"c"^"b" "f"(x) "d"x`, where a < c < b
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Choose the correct alternative:
`int_(-2)^3 1/(x + 5) "d"x` =
`int_1^2 x^2 "d"x` = ______
`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.
`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Solve the following `int_1^3 x^2log x dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x + 5)dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5dx`
Evaluate:
`int_0^1 |x| dx`
Solve the following.
`int_1^3 x^2 log x dx`
Solve the following.
`int_1^3x^2 logx dx`
Solve the following.
`int_1^3 x^2 log x dx`
Solve the following.
`int_0^1e^(x^2) x^3 dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5).dx`
Evaluate the following definite intergral:
`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Evaluate the following definite intergral:
`int_(-2)^3 1/(x + 5)dx`