Advertisements
Advertisements
प्रश्न
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
उत्तर
Consider R.H.S. : `int_"a"^"b" "f"("a" + "b" - x) "d"x`
Let I = `int_"a"^"b" "f"("a" + "b" - x) "d"x`
Put a + b – x = t
∴ – dx = dt
∴ dx = – dt
When x = a, t = a + b – a = b
and when x = b, t = a + b – b = a
∴ I = `int_"b"^"a" "f"("t")(-"dt")`
= `-int_"b"^"a""f"("t")"dt"`
= `int_"a"^"b""f"("t")"dt"` .....`[∵ int_"a"^"b" "f"(x)"d"x = -int_"b"^"a" "f"(x)"d"x]`
= `int_"b"^"a""f"("t")"d"x` .....`[∵ int_"a"^"b" "f"(x)"d"x = int_"a"^"b" "f"("t")"dt"]`
= L.H.S.
∴ `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) d"x`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`
Evaluate:
`int_0^(pi/4) sqrt(1 + sin 2x)*dx`
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`
Evaluate : `int_0^1 x tan^-1x*dx`
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`
`int_2^3 dx/(x(x^3 - 1))` = ______.
Choose the correct option from the given alternatives :
`int_0^(pi/2) sn^6x cos^2x*dx` =
Choose the correct option from the given alternatives :
`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`
Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`
Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
Solve the following : `int_2^4 x/(x^2 + 1)*dx`
Prove that: `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`. Hence find `int_0^(pi/2) sin^2x "d"x`
Choose the correct alternative:
`int_0^"a" 3x^5 "d"x` = 8, then a =
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Evaluate the following definite integrats:
`int_4^9 1/sqrt x dx`
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.
Evaluate:
`int_0^1 |x| dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
`int_a^b f(x) dx = int_a^b f (t) dt`
If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x dx` = k then k = ______.
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Solve the following:
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtxdx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Solve the following.
`int_1^3 x^2 log x dx`
Solve the following.
`int_0^1e^(x^2) x^3 dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`