मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Prove that: ∫abf(x) dx=∫abf(a+b-x) dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`

बेरीज

उत्तर

Consider R.H.S. : `int_"a"^"b" "f"("a" + "b" - x)  "d"x`

Let I = `int_"a"^"b" "f"("a" + "b" - x)  "d"x`

Put a + b – x = t

∴ – dx = dt

∴ dx = – dt

When x = a, t = a + b – a = b

and when x = b, t = a + b – b = a

∴ I = `int_"b"^"a" "f"("t")(-"dt")`

= `-int_"b"^"a""f"("t")"dt"`

= `int_"a"^"b""f"("t")"dt"`     .....`[∵ int_"a"^"b" "f"(x)"d"x = -int_"b"^"a" "f"(x)"d"x]`

= `int_"b"^"a""f"("t")"d"x`     .....`[∵ int_"a"^"b" "f"(x)"d"x = int_"a"^"b" "f"("t")"dt"]`

= L.H.S.

∴ `int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  d"x`

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2.4: Definite Integration - Short Answers II

संबंधित प्रश्‍न

Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`


Evaluate:

`int_0^(pi/4) sqrt(1 + sin 2x)*dx`


Evaluate : `int_0^(pi/4) sin^4x*dx`


Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`


Evaluate : `int_0^1 x tan^-1x*dx`


Evaluate:

`int_0^1 sqrt((1 - x)/(1 + x)) * dx`


Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`


`int_2^3 dx/(x(x^3 - 1))` = ______.


Choose the correct option from the given alternatives : 

`int_0^(pi/2) sn^6x cos^2x*dx` =


Choose the correct option from the given alternatives :

`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`


Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`


Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`


Fill in the blank : `int_0^1 dx/(2x + 5)` = _______


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`


Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`


Solve the following : `int_2^4 x/(x^2 + 1)*dx`


Prove that: `int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)  "d"x`. Hence find `int_0^(pi/2) sin^2x  "d"x` 


Choose the correct alternative:

`int_0^"a" 3x^5  "d"x` = 8, then a =


Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`


Evaluate the following definite integrats: 

`int_4^9 1/sqrt x dx`


Evaluate the following definite integral :

`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`


Solve the following.

`int_1^3 x^2 logx  dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.


Evaluate:

`int_0^1 |x| dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


`int_a^b f(x) dx = int_a^b f (t) dt`


If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x  dx` = k then k = ______.


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Solve the following:

`int_0^1e^(x^2)x^3dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtxdx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Solve the following.

`int_1^3 x^2 log x  dx`


Solve the following.

`int_0^1e^(x^2) x^3 dx`


Evaluate the following definite integral:

`int_1^3 logx.dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×