English

Prove that: ∫abf(x) dx=∫abf(a+b-x) dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`

Sum

Solution

Consider R.H.S. : `int_"a"^"b" "f"("a" + "b" - x)  "d"x`

Let I = `int_"a"^"b" "f"("a" + "b" - x)  "d"x`

Put a + b – x = t

∴ – dx = dt

∴ dx = – dt

When x = a, t = a + b – a = b

and when x = b, t = a + b – b = a

∴ I = `int_"b"^"a" "f"("t")(-"dt")`

= `-int_"b"^"a""f"("t")"dt"`

= `int_"a"^"b""f"("t")"dt"`     .....`[∵ int_"a"^"b" "f"(x)"d"x = -int_"b"^"a" "f"(x)"d"x]`

= `int_"b"^"a""f"("t")"d"x`     .....`[∵ int_"a"^"b" "f"(x)"d"x = int_"a"^"b" "f"("t")"dt"]`

= L.H.S.

∴ `int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  d"x`

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 2.4: Definite Integration - Short Answers II

APPEARS IN

RELATED QUESTIONS

Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`


Evaluate:

`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`


Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`


Evaluate:

`int_0^1 sqrt((1 - x)/(1 + x)) * dx`


Evaluate the following :  `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`


`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.


Choose the correct option from the given alternatives : 

`int_0^(pi/2) sn^6x cos^2x*dx` =


Choose the correct option from the given alternatives :

If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then


Choose the correct option from the given alternatives : 

`int_1^2 (1)/x^2 e^(1/x)*dx` = 


Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`


Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`


Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k


Evaluate the following definite integral:

`int_4^9 (1)/sqrt(x)*dx`


Evaluate the following definite integral:

`int_(-2)^3 (1)/(x + 5)*dx`


Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`


Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`


Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`


Solve the following : `int_2^3 x/(x^2 + 1)*dx`


Solve the following : `int_(-4)^(-1) (1)/x*dx`


Solve the following : `int_2^4 x/(x^2 + 1)*dx`


`int_1^9 (x + 1)/sqrt(x)  "d"x` =


Prove that: `int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)  "d"x`. Hence find `int_0^(pi/2) sin^2x  "d"x` 


Choose the correct alternative:

`int_4^9 ("d"x)/sqrt(x)` =


State whether the following statement is True or False: 

`int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"("a" - x)  "d"x`


Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x))  "d"x`


Evaluate:

`int_1^2 1/(x^2 + 6x + 5)  dx`


Evaluate the following definite intergrals. 

`int_1^3 logx* dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/ ((9x^2 -1)) dx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Evaluate the following definite intergral:

`int_1^3 log x·dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5).dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Solve the following.

`int_1^3x^2log x  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×