Advertisements
Advertisements
Question
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Solution
Consider R.H.S. : `int_"a"^"b" "f"("a" + "b" - x) "d"x`
Let I = `int_"a"^"b" "f"("a" + "b" - x) "d"x`
Put a + b – x = t
∴ – dx = dt
∴ dx = – dt
When x = a, t = a + b – a = b
and when x = b, t = a + b – b = a
∴ I = `int_"b"^"a" "f"("t")(-"dt")`
= `-int_"b"^"a""f"("t")"dt"`
= `int_"a"^"b""f"("t")"dt"` .....`[∵ int_"a"^"b" "f"(x)"d"x = -int_"b"^"a" "f"(x)"d"x]`
= `int_"b"^"a""f"("t")"d"x` .....`[∵ int_"a"^"b" "f"(x)"d"x = int_"a"^"b" "f"("t")"dt"]`
= L.H.S.
∴ `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) d"x`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Choose the correct option from the given alternatives :
`int_0^(pi/2) sn^6x cos^2x*dx` =
Choose the correct option from the given alternatives :
If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Evaluate the following definite integral:
`int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite integral:
`int_(-2)^3 (1)/(x + 5)*dx`
Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`
Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`
Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`
Solve the following : `int_2^3 x/(x^2 + 1)*dx`
Solve the following : `int_(-4)^(-1) (1)/x*dx`
Solve the following : `int_2^4 x/(x^2 + 1)*dx`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
Prove that: `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`. Hence find `int_0^(pi/2) sin^2x "d"x`
Choose the correct alternative:
`int_4^9 ("d"x)/sqrt(x)` =
State whether the following statement is True or False:
`int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"("a" - x) "d"x`
Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x)) "d"x`
Evaluate:
`int_1^2 1/(x^2 + 6x + 5) dx`
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/ ((9x^2 -1)) dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`
Evaluate the following definite intergral:
`int_1^3 log x·dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5).dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Solve the following.
`int_1^3x^2log x dx`