Advertisements
Advertisements
प्रश्न
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
उत्तर
Let I = `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
= `int_0^1((x^2 + 3x + 2)/x^(1/2))*dx`
= `int_0^1(x^2/x^(1/2) + (3x)/x^(1/2) + (2)/x^(1/2))*dx`
= `int_0^1(x^(1/2) + 3x^(1/2) + 2x^(1/2))*dx`
= `int_0^1x^(3/2)*dx + 3int_0^1 x^(1/2)*dx + 2int_0^1 x^(1/2)*dx`
= `[(x^5/2)/(5/2)]_0^1 + 3[(x^3/2)/(3/2)]_0^1 + 2[(x^1/2)/(1/2)]_0^1`
= `(2)/(5)(1 - 0) 3 xx (2)/(3)(1 - 0) + 2 xx 2(1 - 0)`
= `(2)/(5) 2 + 4`
∴ I = `(32)/(5)`.
APPEARS IN
संबंधित प्रश्न
Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`
Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`
Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`
Choose the correct alternative :
`int_(-9)^9 x^3/(4 - x^2)*dx` =
Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Solve the following:
`int_0^1 e^(x^2)*x^3dx`
Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`
Solve the following : `int_(-4)^(-1) (1)/x*dx`
Choose the correct alternative:
`int_0^"a" 3x^5 "d"x` = 8, then a =
`int_1^2 x^2 "d"x` = ______
`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.
`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite integral:
`int_1^3 logx dx`
Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`