मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate the following : ∫-11x3+2x2+4⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`

बेरीज

उत्तर

Let I = `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`

= `int_(-1)^(1) [x^3/sqrt(x^2 + 4) + 2/sqrt(x^2 + 4)]*dx`

= `int_(-1)^(1) x^3/sqrt(x^2 + 4)*dx + 2 int (1)/sqrt(x^2 + 4)*dx`

= I1 + 2I2                               ...(1)

Let f(x) = `x^3/sqrt(x^2 + 4)`

∴ f(– x) = `(-x)^3/sqrt((-x)^2 + 4)`

= `x^3/sqrt(x^2 + 4)`

= – f(x)

∴ f is an odd function.

∴ `int_(-1)^(1)*dx` = 0, i.e. 

I1 = `int_(-1)^(1) = x^3/sqrt(x^2 + 4)*dx` = 0    ...(2)

∵ (– x)2 = x2

∴ `(1)/sqrt(x^2 + 4)` is an even function.

∴ `int_(-1)^(1) f(x)*dx = 2int_0^(1) f(x)*dx`

∴ I2 = `2int_0^(1) 1/sqrt(x^2 + 4)*dx`

= `2[log (x + sqrt(x^2 + 4))]_0^1`

= `2g(1 + sqrt(1 + 4)) -  log(0 + sqrt(0 + 4))]`

= `2[log (sqrt(5) + 1) - log 2]`

= `2 log ((sqrt(5 + 1))/2)`                     ...(3
From (1), (2) and (3, we get

I = `0 + 2[2 log ((sqrt(5 + 1))/2)]`

= `4log ((sqrt(5) + 1)/2)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Definite Integration - Exercise 4.2 [पृष्ठ १७२]

APPEARS IN

संबंधित प्रश्‍न

Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`


Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`


Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`


Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`


Choose the correct option from the given alternatives : 

`int_0^(pi/2) sn^6x cos^2x*dx` =


Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`


Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`


Evaluate the following:

`int_0^pi x/(1 + sin^2x) * dx`


Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`


Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`


Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k


Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`


Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`


Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.


Choose the correct alternative :

`int_2^3 x/(x^2 - 1)*dx` =


Fill in the blank : `int_2^3 x^4*dx` = _______


State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`


State whether the following is True or False : `int_(-5)^(5)  x^3/(x^2 + 7)*dx` = 0


Solve the following:

`int_1^3 x^2 log x*dx`


Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`


Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`


`int_0^"a" 4x^3  "d"x` = 81, then a = ______


If `int_1^"a" (3x^2 + 2x + 1)  "d"x` = 11, find the real value of a


`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?


`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?


`int_2^3 "x"/("x"^2 - 1)` dx = ____________.


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Solve the following.

`int_1^3 x^2 logx  dx`


Evaluate the following integrals:

`int_-9^9 (x^3)/(4 - x^2) dx`


`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2-1 )`dx


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x  dx` = k then k = ______.


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Evaluate the following integral. 

`int_-9^9 x^3/(4-x^2)` dx


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Evaluate the following definite intergral:

`int_1^3 log x·dx`


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×