Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
उत्तर
Let I = `int_0^3 x^2(3 - x)^(5/2)*dx`
We use the property `int_0^a f(x)*dx = int_0^a f(a - x)*dx`
Here, a = 3
Hence in I, changing x to 3 – x, we get
I = `int_0^3 (3 - x)^2 [3 - (3 - x)]^(5/2)*dx`
= `int_0^3 (9 - 6x + x^2)x^(5/2)*dx`
= `int_0^3 [9x^(5/2) - 6x^(7/2) + x^(9/2)]*dx`
= `9 int_0^3 x^(5/2)*dx - 6int_0^3 x^(7/2)*dx + int_0^3 x^(9/2)*dx`
= `9[(x^(7/2))/(7/2)]_0^3 - 6[(x^(9/2))/(9/2)]_0^3 + 9[(x^(11/2))/(11/2)]_0^3`
= `9[(2.3^(7/2))/7 - 0] - 6[(2.3^(9/2))/9 - 0] + [2/11*3^(11/2) - 0]`
= `(18)/(7) 3^(7/2) - (2.6)/9*3^(7/2)*3 + 2/11*3^(7/2)*3^2`
= `2(3)^(7/2)[9/7 - 2 + 9/11]`
= `2(3)^(7/2)[(99 - 154 + 63)/77]`
= `2(3)^(7/2) xx 8/77`
= `16/77(3)^(7/2)`.
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int_0^(pi/4) sqrt(1 + sin 2x)*dx`
Evaluate:
`int_0^(pi/2) sqrt(cos x) sin^3x * dx`
Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`
Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`
Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`
Choose the correct alternative :
`int_(-9)^9 x^3/(4 - x^2)*dx` =
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
Choose the correct alternative:
`int_2^3 x/(x^2 - 1) "d"x` =
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2)) "d"x`
Evaluate `int_0^"a" x^2 ("a" - x)^(3/2) "d"x`
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
Evaluate:
`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral:
`int _1^3logxdx`
The principle solutions of the equation cos θ = `1/2` are ______.
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Solve the following:
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5).dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`