मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate the following : ∫03x2(3-x)52⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`

बेरीज

उत्तर

Let I = `int_0^3 x^2(3 - x)^(5/2)*dx`

We use the property `int_0^a f(x)*dx = int_0^a f(a - x)*dx`

Here, a = 3
Hence in I, changing x to 3 – x, we get

I = `int_0^3 (3 - x)^2 [3 - (3 - x)]^(5/2)*dx`

= `int_0^3 (9 - 6x + x^2)x^(5/2)*dx`

= `int_0^3 [9x^(5/2) - 6x^(7/2) + x^(9/2)]*dx`

= `9 int_0^3 x^(5/2)*dx - 6int_0^3 x^(7/2)*dx + int_0^3 x^(9/2)*dx`

= `9[(x^(7/2))/(7/2)]_0^3 - 6[(x^(9/2))/(9/2)]_0^3 + 9[(x^(11/2))/(11/2)]_0^3`

= `9[(2.3^(7/2))/7 - 0] - 6[(2.3^(9/2))/9 - 0] + [2/11*3^(11/2) - 0]`

= `(18)/(7) 3^(7/2) - (2.6)/9*3^(7/2)*3 + 2/11*3^(7/2)*3^2`

= `2(3)^(7/2)[9/7 - 2 + 9/11]`

= `2(3)^(7/2)[(99 - 154 + 63)/77]`

= `2(3)^(7/2) xx 8/77`

= `16/77(3)^(7/2)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Definite Integration - Exercise 4.2 [पृष्ठ १७२]

APPEARS IN

संबंधित प्रश्‍न

Evaluate:

`int_0^(pi/4) sqrt(1 + sin 2x)*dx`


Evaluate:

`int_0^(pi/2) sqrt(cos x) sin^3x * dx`


Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`


`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.


Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`


Evaluate the following:

`int_0^pi x/(1 + sin^2x) * dx`


Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`


Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`


Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.


Evaluate the following definite integral:

`int_1^3 logx.dx`


Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`


Choose the correct alternative :

`int_(-9)^9 x^3/(4 - x^2)*dx` =


Choose the correct alternative : 

`int_(-2)^3 dx/(x + 5)` =


Choose the correct alternative :

`int_(-7)^7 x^3/(x^2 + 7)*dx` =


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`


State whether the following is True or False :  `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`


Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`


Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`


Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`


`int_0^1 sqrt((1 - x)/(1 +  x))  "d"x` =


Choose the correct alternative:

`int_2^3 x/(x^2 - 1)  "d"x` =


State whether the following statement is True or False:

`int_0^1 1/(2x + 5)  "d"x = log(7/5)`


Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2))  "d"x`


Evaluate `int_0^"a" x^2 ("a" - x)^(3/2)  "d"x`


Evaluate the following definite intergrals. 

`int_1^3 logx* dx`


Evaluate the following definite integrals:  `int_-2^3 1/(x + 5) *dx`


Evaluate the following definite integral :

`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`


Evaluate:

`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`


Solve the following.

`int_1^3 x^2 log x  dx`


Evaluate the following definite intergral:

`int _1^3logxdx`


The principle solutions of the equation cos θ = `1/2` are ______.


Solve the following:

`int_1^3 x^2 log x dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Solve the following:

`int_0^1e^(x^2)x^3dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite intergral.

`int_4^9 1/sqrtx .dx`


Evaluate the following definite integral:

`int_-2^3 1/(x+5).dx`


Evaluate the following definite integral:

`int_1^3 logx.dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtx dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×