Advertisements
Advertisements
प्रश्न
Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`
उत्तर
Let I = `int_(−9)^9 x^3/(4 − x^2).dx`
We know that, If f(−x) = f(x), f(x) is an even function. If f(−x) = −f(x), f(x) is an odd function.
f(x) = `x^3/(4 – x^2)`
∴ f(– x) = `(– x)^3/[4 – ( – x)^2]`
∴ f(– x) = `(−x^3)/(4 – x^2)`
∴ f(– x) = – f(x)
∴ If f(−x) = −f(x), f(x) is an odd function.
∴ `int_(−9)^9 x^3/(4 − x^2).dx = 0 ...[int_(−"a")^"a" f(x) = 0, if f(x) "odd function"]`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`
Evaluate:
`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`
Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`
Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`
Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
Choose the correct alternative :
If `int_0^"a" 3x^2*dx` = 8, then a = ?
Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
State whether the following statement is True or False:
`int_2^3 x/(x^2 + 1) "d"x = 1/2 log 2`
State whether the following statement is True or False:
`int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
Evaluate the following definite intergral:
`int_1^3 logx dx`
Evaluate the following integrals:
`int_0^1 x(1 - x)^5 dx`
Solve the following:
`int_1^3 x^2 log x dx`
Solve the following.
`int_1^3 x^2 log x dx`