Advertisements
Advertisements
प्रश्न
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
उत्तर
Let I = `int_0^"a" x^2("a" - x)^(3/2)*dx`
= `int_0^"a"("a" -x)^2 ["a" - ("a" - x)]^(3/2)*dx ...[because int_0^"a" f(x)*dx = int_0^"a" f("a" - x)*dx]`
= `int_0^"a" ("a"^2 - 2"a"x + x^2)x^(3/2)*dx`
= `int_0^"a"("a"^2x^(3/2) - 2"a"x^(5/2) + x^(7/2))*dx`
= `"a"^2 int_0^"a" x^(3/2)*dx - 2"a" int_0^"a" x^(5/2)*dx + int_0^"a"x^(7/2)*dx`
= `"a"^2 [(x^(5/2))/(5/2)]_0^"a" - 2"a"[(x^(7/2))/(7/2)]_0^"a" + [(x^(9/2))/(9/2)]_0^"a"`
= `(2"a"^2)/(5)[("a")^(5/2) - 0] - (4"a")/(7)[("a")^(7/2) - 0] + (2)/(9)[("a")^(9/2) - 0]`
= `(2)/(5)"a"^(9/2) - (4)/(7)"a"^(9/2) + (2)/(9)"a"^(9/2)`
= `(2/5 - 4/7 + 2/9)"a"^(9/2)`
= `((126 - 180 + 70)/315)"a"^(9/2)`
∴ I = `(16)/(315)"a"^(9/2)`.
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`
Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
Choose the correct alternative:
`int_2^3 x^4 "d"x` =
Choose the correct alternative:
`int_2^3 x/(x^2 - 1) "d"x` =
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x dx` = k then k = ______.
Evaluate the following definite integral:
`int_1^3 logx dx`
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral:
`int_1^3logxdx`
Evaluate the following definite intergral.
`int_1^2 (3x)/((9x^2 - 1))dx`