Advertisements
Advertisements
प्रश्न
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
उत्तर
Let I = `int_0^"a" x^2("a" - x)^(3/2)*dx`
= `int_0^"a"("a" -x)^2 ["a" - ("a" - x)]^(3/2)*dx ...[because int_0^"a" f(x)*dx = int_0^"a" f("a" - x)*dx]`
= `int_0^"a" ("a"^2 - 2"a"x + x^2)x^(3/2)*dx`
= `int_0^"a"("a"^2x^(3/2) - 2"a"x^(5/2) + x^(7/2))*dx`
= `"a"^2 int_0^"a" x^(3/2)*dx - 2"a" int_0^"a" x^(5/2)*dx + int_0^"a"x^(7/2)*dx`
= `"a"^2 [(x^(5/2))/(5/2)]_0^"a" - 2"a"[(x^(7/2))/(7/2)]_0^"a" + [(x^(9/2))/(9/2)]_0^"a"`
= `(2"a"^2)/(5)[("a")^(5/2) - 0] - (4"a")/(7)[("a")^(7/2) - 0] + (2)/(9)[("a")^(9/2) - 0]`
= `(2)/(5)"a"^(9/2) - (4)/(7)"a"^(9/2) + (2)/(9)"a"^(9/2)`
= `(2/5 - 4/7 + 2/9)"a"^(9/2)`
= `((126 - 180 + 70)/315)"a"^(9/2)`
∴ I = `(16)/(315)"a"^(9/2)`.
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int_0^(pi/4) sqrt(1 + sin 2x)*dx`
Evaluate the following:
`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`
Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`
Solve the following : `int_(-4)^(-1) (1)/x*dx`
By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Solution: Let I = `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`
∴ x + 3 = A(x + 2) + B.x
∴ A = `square`, B = `square`
∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`
∴ I = `[square log x + square log(x + 2)]_1^2`
∴ I = `square`
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int _1^3logxdx`
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`