Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
उत्तर
Let I = `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
= `int_(pi/4)^(pi/2) (cos^2 theta/2 - sin^2 theta/2)/[cos theta/2 + sin theta/2]^3*d theta`
= `int_(pi/4)^(pi/2)((cos theta/2 - sin theta/2)(cos theta/2 + sin theta/2))/[cos theta/2 + sin theta/2]^3*d theta`
= `int_(pi/4)^(pi/2) (cos theta/2 - sin theta/2)/[cos theta/2 + sin theta/2]^2*d theta`
Put `cos theta/2 - sin theta/2` = t
∴ `(-1/2 sin theta/2 +1/2 cos theta/2)*d theta` = dt
∴ `(cos theta/2 - sin theta/2)*d theta = 2*dt`
When θ = `pi/(4), t = cos pi/(8) + sin pi/(8)`
When θ = `pi/(2), t = cos pi/(4) + sin pi/(4) = (1)/sqrt(2) + (1)/sqrt(2) = sqrt(2)`
∴ I = `int_(cos pi/8 + sin pi/8)^sqrt(2) (1)/t^2* 2dt`
= `2 int_(cos pi/8 + sin pi/8)^sqrt(2) t^-2*dt`
= `2[(t^-1)/-1]_(cos pi/8 + sin pi/8)^sqrt(2)`
= `[(-2)/t]_(cos pi/8 + sin pi/8)^sqrt(2)`
= `- (2)/sqrt(2) + (2)/(cos pi/8 + sin pi/8)`
= `(2)/(cos pi/8 + sin pi/8) - sqrt(2)`.
APPEARS IN
संबंधित प्रश्न
Prove that:
`{:(int_(-a)^a f(x) dx = 2 int_0^a f(x) dx",", "If" f(x) "is an even function"),( = 0",", "if" f(x) "is an odd function"):}`
Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`
Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`
Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`
Evaluate : `int_0^(pi/4) sec^4x*dx`
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`
Evaluate : `int_1^3 (cos(logx))/x*dx`
`int_2^3 dx/(x(x^3 - 1))` = ______.
Choose the correct option from the given alternatives :
`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`
Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`
Evaluate the following : `int_0^pi (sin^-1x + cos^-1x)^3 sin^3x*dx`
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Fill in the blank : `int_2^3 x^4*dx` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
Solve the following : `int_1^2 x^2*dx`
Prove that: `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`. Hence find `int_0^(pi/2) sin^2x "d"x`
State whether the following statement is True or False:
`int_0^"a" 3x^2 "d"x` = 27, then a = 2.5
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate:
`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate the following definite integral:
`int_1^3 logx dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2 - 1))dx`