हिंदी

Evaluate the following : ∫π4π2cosθ[cos θ2+sin θ2]3⋅dθ - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos  theta/2 + sin  theta/2]^3*d theta`

योग

उत्तर

Let I = `int_(pi/4)^(pi/2) (cos theta)/[cos  theta/2 + sin  theta/2]^3*d theta`

= `int_(pi/4)^(pi/2) (cos^2  theta/2 - sin^2  theta/2)/[cos  theta/2 + sin  theta/2]^3*d theta`

= `int_(pi/4)^(pi/2)((cos  theta/2 - sin  theta/2)(cos  theta/2 + sin  theta/2))/[cos  theta/2 + sin  theta/2]^3*d theta`

= `int_(pi/4)^(pi/2) (cos  theta/2 - sin  theta/2)/[cos  theta/2 + sin  theta/2]^2*d theta`

Put `cos  theta/2 - sin  theta/2` = t

∴ `(-1/2 sin  theta/2 +1/2 cos  theta/2)*d theta` = dt

∴ `(cos  theta/2 - sin  theta/2)*d theta = 2*dt`

When θ = `pi/(4), t = cos  pi/(8) + sin  pi/(8)`

When θ = `pi/(2), t = cos  pi/(4) + sin  pi/(4) = (1)/sqrt(2) + (1)/sqrt(2) = sqrt(2)`

∴  I = `int_(cos  pi/8 + sin  pi/8)^sqrt(2) (1)/t^2* 2dt`

= `2 int_(cos  pi/8 + sin  pi/8)^sqrt(2) t^-2*dt`

= `2[(t^-1)/-1]_(cos  pi/8 + sin  pi/8)^sqrt(2)`

= `[(-2)/t]_(cos  pi/8 + sin  pi/8)^sqrt(2)`

= `- (2)/sqrt(2) + (2)/(cos  pi/8 + sin  pi/8)`

= `(2)/(cos  pi/8 + sin  pi/8) - sqrt(2)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Definite Integration - Miscellaneous Exercise 4 [पृष्ठ १७६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Definite Integration
Miscellaneous Exercise 4 | Q 2.02 | पृष्ठ १७६

संबंधित प्रश्न

Prove that: 

`{:(int_(-a)^a f(x) dx  = 2 int_0^a f(x) dx",", "If"  f(x)  "is an even function"),(                                       = 0",", "if"  f(x)  "is an odd function"):}`


Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`


Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`


Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`


Evaluate : `int_0^(pi/4) sec^4x*dx`


Evaluate:

`int_0^1 sqrt((1 - x)/(1 + x)) * dx`


Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`


Evaluate : `int_1^3 (cos(logx))/x*dx`


`int_2^3 dx/(x(x^3 - 1))` = ______.


Choose the correct option from the given alternatives :

`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`


Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`


Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`


Evaluate the following : `int_0^pi  (sin^-1x + cos^-1x)^3 sin^3x*dx`


Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k


Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Fill in the blank : `int_2^3 x^4*dx` = _______


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`


State whether the following is True or False :  `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`


Solve the following : `int_1^2 x^2*dx`


Prove that: `int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)  "d"x`. Hence find `int_0^(pi/2) sin^2x  "d"x` 


State whether the following statement is True or False:

`int_0^"a" 3x^2  "d"x` = 27, then a = 2.5


If `int_1^"a" (3x^2 + 2x + 1)  "d"x` = 11, find the real value of a


`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?


`int_2^3 "x"/("x"^2 - 1)` dx = ____________.


Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Solve the following.

`int_1^3 x^2 logx  dx`


Evaluate:

`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`


Solve the following.

`int_1^3 x^2 log x  dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Evaluate the following definite integral:

`int_1^3 logx  dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following definite intergral:

`int_(1)^3logx  dx`


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2 - 1))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×