English

Evaluate the following : ∫π4π2cosθ[cos θ2+sin θ2]3⋅dθ - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos  theta/2 + sin  theta/2]^3*d theta`

Sum

Solution

Let I = `int_(pi/4)^(pi/2) (cos theta)/[cos  theta/2 + sin  theta/2]^3*d theta`

= `int_(pi/4)^(pi/2) (cos^2  theta/2 - sin^2  theta/2)/[cos  theta/2 + sin  theta/2]^3*d theta`

= `int_(pi/4)^(pi/2)((cos  theta/2 - sin  theta/2)(cos  theta/2 + sin  theta/2))/[cos  theta/2 + sin  theta/2]^3*d theta`

= `int_(pi/4)^(pi/2) (cos  theta/2 - sin  theta/2)/[cos  theta/2 + sin  theta/2]^2*d theta`

Put `cos  theta/2 - sin  theta/2` = t

∴ `(-1/2 sin  theta/2 +1/2 cos  theta/2)*d theta` = dt

∴ `(cos  theta/2 - sin  theta/2)*d theta = 2*dt`

When θ = `pi/(4), t = cos  pi/(8) + sin  pi/(8)`

When θ = `pi/(2), t = cos  pi/(4) + sin  pi/(4) = (1)/sqrt(2) + (1)/sqrt(2) = sqrt(2)`

∴  I = `int_(cos  pi/8 + sin  pi/8)^sqrt(2) (1)/t^2* 2dt`

= `2 int_(cos  pi/8 + sin  pi/8)^sqrt(2) t^-2*dt`

= `2[(t^-1)/-1]_(cos  pi/8 + sin  pi/8)^sqrt(2)`

= `[(-2)/t]_(cos  pi/8 + sin  pi/8)^sqrt(2)`

= `- (2)/sqrt(2) + (2)/(cos  pi/8 + sin  pi/8)`

= `(2)/(cos  pi/8 + sin  pi/8) - sqrt(2)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Miscellaneous Exercise 4 [Page 176]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 4 Definite Integration
Miscellaneous Exercise 4 | Q 2.02 | Page 176

RELATED QUESTIONS

Prove that: 

`{:(int_(-a)^a f(x) dx  = 2 int_0^a f(x) dx",", "If"  f(x)  "is an even function"),(                                       = 0",", "if"  f(x)  "is an odd function"):}`


Prove that:

`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`


Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`


Evaluate : `int_0^(pi/4) sec^4x*dx`


Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`


Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`


Choose the correct option from the given alternatives :

`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Choose the correct option from the given alternatives :

The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is


Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`


Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k


Fill in the blank : `int_0^1 dx/(2x + 5)` = _______


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`


State whether the following is True or False :  `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`


Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`


Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`


Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`


Prove that: `int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`


Choose the correct alternative:

`int_(-2)^3 1/(x + 5)  "d"x` =


Choose the correct alternative:

`int_2^3 x/(x^2 - 1)  "d"x` =


Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x))  "d"x`


Evaluate `int_1^2 (3x)/((9x^2 - 1))  "d"x`


`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?


`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?


`int_2^3 "x"/("x"^2 - 1)` dx = ____________.


Evaluate the following definite integrals:  `int_-2^3 1/(x + 5) *dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


Solve the following.

`int_1^3 x^2 log x  dx`


Prove that `int_0^(2a) f(x)dx = int_0^a[f(x)  + f(2a - x)]dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2-1))dx`


Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`


Evaluate the following definite intergral:

`int_1^3 log x·dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5).dx`


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2) dx` 


Solve the following.

`int_0^1e^(x^2) x^3 dx`


Evaluate the following definite intergral.

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2 - 1))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×