Advertisements
Advertisements
Question
Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
Solution
Let I = `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
= `int_(pi/4)^(pi/2) (cos^2 theta/2 - sin^2 theta/2)/[cos theta/2 + sin theta/2]^3*d theta`
= `int_(pi/4)^(pi/2)((cos theta/2 - sin theta/2)(cos theta/2 + sin theta/2))/[cos theta/2 + sin theta/2]^3*d theta`
= `int_(pi/4)^(pi/2) (cos theta/2 - sin theta/2)/[cos theta/2 + sin theta/2]^2*d theta`
Put `cos theta/2 - sin theta/2` = t
∴ `(-1/2 sin theta/2 +1/2 cos theta/2)*d theta` = dt
∴ `(cos theta/2 - sin theta/2)*d theta = 2*dt`
When θ = `pi/(4), t = cos pi/(8) + sin pi/(8)`
When θ = `pi/(2), t = cos pi/(4) + sin pi/(4) = (1)/sqrt(2) + (1)/sqrt(2) = sqrt(2)`
∴ I = `int_(cos pi/8 + sin pi/8)^sqrt(2) (1)/t^2* 2dt`
= `2 int_(cos pi/8 + sin pi/8)^sqrt(2) t^-2*dt`
= `2[(t^-1)/-1]_(cos pi/8 + sin pi/8)^sqrt(2)`
= `[(-2)/t]_(cos pi/8 + sin pi/8)^sqrt(2)`
= `- (2)/sqrt(2) + (2)/(cos pi/8 + sin pi/8)`
= `(2)/(cos pi/8 + sin pi/8) - sqrt(2)`.
APPEARS IN
RELATED QUESTIONS
Prove that:
`{:(int_(-a)^a f(x) dx = 2 int_0^a f(x) dx",", "If" f(x) "is an even function"),( = 0",", "if" f(x) "is an odd function"):}`
Prove that:
`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`
Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`
Evaluate : `int_0^(pi/4) sec^4x*dx`
Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
Choose the correct option from the given alternatives :
`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`
Prove that: `int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
Choose the correct alternative:
`int_(-2)^3 1/(x + 5) "d"x` =
Choose the correct alternative:
`int_2^3 x/(x^2 - 1) "d"x` =
Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x)) "d"x`
Evaluate `int_1^2 (3x)/((9x^2 - 1)) "d"x`
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Solve the following.
`int_1^3 x^2 log x dx`
Prove that `int_0^(2a) f(x)dx = int_0^a[f(x) + f(2a - x)]dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite intergral:
`int_1^3 log x·dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5).dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`
Solve the following.
`int_0^1e^(x^2) x^3 dx`
Evaluate the following definite intergral.
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2 - 1))dx`