Advertisements
Advertisements
Question
Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
Solution
Let I = `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
Put Numerator = `"A"("Denominator") + "B"[d/dx("Denominator")]`
∴ cos x = `"A"(3cosx + sinx) + "B"[d/dx (3cos x + sinx)]`
= A(3 cos x + sin x) + B(– 3 sin x + cos x)
∴ cos x + 0· sin x = (3A ++ B)cos x (A – 3B) sin x
Comapring the coefficient od sin x and cos x on both the sides, we get
3A + B = 1 ...(1)
A – 3B = 0 ...(2)
Multiplying equation (1) by 3, we get
9A + 3B = 3 ...(3)
Adding (2) and (3), we get
10A = 3
∴ A = `(3)/(10)`
∴ from (1), `3(3/10) "B" = 1`
∴ B = `1 - (9)/(10) = (1)/(10)`
∴ cos x = `(3)/(10)(3cosx+ sinx) + (1)/(10)(-3sinx + cosx)`
∴ I = `int_0^(pi/2) [(3/10(3cosx + sinx) + 1/10(-3sinx + cosx))/(3cosx + sinx)]*dx`
= `int_0^(pi/2) [3/10 + (1/10 (- 3sinx + cosx))/(3cosx + sinx)]*dx`
= `(3)/(10) int_0^(pi/2) 1*dx + 1/10 int_0^(pi/2) (-3sinx + cosx)/(3cosx +sinx)*dx`
= `(3)/(10) int_0^(pi/2)+ 1/10 [log|3cosx + sinx|]_0^(pi/2) ...[because int (f'(x))/f(x)*dx = log int|f(x)| + c]`
= `(3)/(10)[pi/2 - 0] +1/10[log|3 cos pi/2 + sin pi/2| - log|3cos 0 + sin0|]`
= `(3pi)/(20) + 1/(10) [log|3 xx 0 + 1| - log|3 xx 1 + 0|]`
= `(3pi)/(20) + 1/10 [log1 - log 3]`
= `(3pi)/(20) - (1)/(10)log3`. ...[∵ log 1 = 0]
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`
Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`
Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`
Evaluate the following : `int_(-2)^(3) |x - 2|*dx`
Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
`int_1^2 ("e"^(1/x))/(x^2) "d"x` =
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Choose the correct alternative:
`int_0^"a" 3x^5 "d"x` = 8, then a =
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
State whether the following statement is True or False:
`int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x)) "d"x`
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2)) "d"x`
Evaluate `int_0^"a" x^2 ("a" - x)^(3/2) "d"x`
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Solve the following `int_1^3 x^2log x dx`
Solve the following.
`int_1^3 x^2 logx dx`
`int_0^4 1/sqrt(4x - x^2)dx` = ______.
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Solve the following.
`int_1^3 x^2 log x dx `
Prove that `int_0^(2a) f(x)dx = int_0^a[f(x) + f(2a - x)]dx`
The principle solutions of the equation cos θ = `1/2` are ______.
Evaluate the following definite intergral:
`int_4^9 1/sqrtxdx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`