Advertisements
Online Mock Tests
Chapters
Advertisements
Solutions for Chapter 4: Definite Integration
Below listed, you can find solutions for Chapter 4 of Maharashtra State Board Balbharati for Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board.
Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board 4 Definite Integration Exercise 4.1 [Page 156]
Evaluate the following integrals as limit of a sum : `""int_1^3 (3x - 4).dx`
Evaluate the following integrals as limit of a sum:
\[\int\limits_0^4 x^2 \cdot dx\]
Evaluate the following integrals as limit of a sum:
`int _0^2 e^x * dx`
Evaluate the following integrals as limit of a sum:
\[\int\limits_0^2 (3x^2 - 1)\cdot dx\]
Evaluate the following integrals as limit of a sum : \[\int\limits_1^3 x^3 \cdot dx\]
Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board 4 Definite Integration Exercise 4.2 [Pages 171 - 172]
Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`
Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`
Evaluate: `int_0^(π/4) cot^2x.dx`
Evaluate:
`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Evaluate: `int_0^1 (x^2 - 2)/(x^2 + 1).dx`
Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`
Evaluate:
`int_0^(pi/4) sqrt(1 + sin 2x)*dx`
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`
Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate: `int_0^(pi/2) x sin x.dx`
Evaluate : `int_0^1 x tan^-1x*dx`
Evaluate: `int_0^oo xe^-x.dx`
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate:
`int_0^(pi/2) sqrt(cos x) sin^3x * dx`
Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`
Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`
Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Evaluate : `int_0^(pi/4) sec^4x*dx`
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate: `int_0^π sin^3x (1 + 2cosx)(1 + cosx)^2.dx`
Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`
Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`
Evaluate : `int_1^3 (cos(logx))/x*dx`
Evaluate the following:
`int_0^a (1)/(x + sqrt(a^2 - x^2)).dx`
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`
Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`
Evaluate the following:
`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`
Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`
Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`
Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
Evaluate the following : `int_0^pi x sin x cos^2x*dx`
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board 4 Definite Integration Miscellaneous Exercise 4 [Pages 175 - 177]
Choose the correct option from the given alternatives:
`int_2^3 dx/(x(x^3 - 1))` = ______.
`(1)/(3) log (208/189)`
`(1)/(3) log (189/208)`
`log (208/189)`
`log (189/208)`
Choose the correct option from the given alternatives :
`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.
`(4 - pi)/2`
`(pi - 4)/2`
`4 - pi/(2)`
`(4 + pi)/2`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
3 + 2π
2 + π
4 – π
4 + π
Choose the correct option from the given alternatives :
`int_0^(pi/2) sn^6x cos^2x*dx` =
`(7pi)/(256)`
`(3pi)/(256)`
`(5pi)/(256)`
`(-5pi)/(256)`
Choose the correct option from the given alternatives :
If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to
`sqrt(2)(2sqrt(2) - 2)`
`sqrt(2)/(3)(2 - 2sqrt(2))`
`(2sqrt(2) - 2)/(3)`
`4sqrt(2)`
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
`sqrt(e) + 1`
`sqrt(e) - 1`
`sqrt(e)(sqrt(e) - 1)`
`(sqrt(e) - 1)/e`
Choose the correct option from the given alternatives :
If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then
a = e, b = – 2
a = e, b = 2
a = – e, b = 2
a = – e, b = – 2
Choose the correct option from the given alternatives :
Let I1 = `int_e^(e^2) dx/logx "and" "I"_2 = int_1^2 e^x/x*dx`, then
I1 = `(1)/(3)"I"_2`
I1 + I2 = 0
I1 = 2I2
I1 = I2
Choose the correct option from the given alternatives :
`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
9
`(9)/(2)`
0
1
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
0
1
2
`pi`
Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`
Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`
Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`
Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`
Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`
Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`
Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`
Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`
Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`
Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`
Evaluate the following : `int_0^pi (sin^-1x + cos^-1x)^3 sin^3x*dx`
Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`
Evaluate the following : `int_(-2)^(3) |x - 2|*dx`
Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`
Solutions for 4: Definite Integration
Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board chapter 4 - Definite Integration
Shaalaa.com has the Maharashtra State Board Mathematics Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board Maharashtra State Board solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. Balbharati solutions for Mathematics Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board Maharashtra State Board 4 (Definite Integration) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.
Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. Balbharati textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.
Concepts covered in Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board chapter 4 Definite Integration are Definite Integral as Limit of Sum, Fundamental Theorem of Integral Calculus, Methods of Evaluation and Properties of Definite Integral.
Using Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board solutions Definite Integration exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in Balbharati Solutions are essential questions that can be asked in the final exam. Maximum Maharashtra State Board Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board students prefer Balbharati Textbook Solutions to score more in exams.
Get the free view of Chapter 4, Definite Integration Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board additional questions for Mathematics Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board Maharashtra State Board, and you can use Shaalaa.com to keep it handy for your exam preparation.