Advertisements
Advertisements
Question
Evaluate the following integrals as limit of a sum : `""int_1^3 (3x - 4).dx`
Solution
Let f(x) = 3x – 4, for 1 ≤ x ≤ 3
Divide the closed interval [1, 3] into n subintervals each of length h at the points
1, 1 + h, 1 + 2h, 1 + rh, ..., 1 + nh = 3
∴ nh = 2
∴ h = `(2)/n` and as `n → oo, h → 0`
Here, a = 1
∴ f(a + rh) = f(1 + rh) = 3(1 + rh) – 4 = 3rh – 1
∵ \[\int\limits_a^b f(x) \cdot dx = \lim\limits_{n\to \infty}\displaystyle\sum_{r=1}^{n} f(a + rh)\cdot h\]
∴ \[\int\limits_1^3 (3x-4)\cdot dx=\lim\limits_{n\to \infty}\displaystyle\sum_{r=1}^{n} f(3rh - 1)\cdot h\]
= \[\lim\limits_{n\to \infty}\displaystyle\sum_{r=1}^{n} (3r \cdot \frac{2}{n} - 1) \cdot \frac{2}{n}\] ...[∵ h = `2/n`]
= \[\lim\limits_{n\to \infty}\displaystyle\sum_{r=1}^{n} (\frac{12}{n^2}{r} - \frac{2}{n})\]
= \[\lim\limits_{n\to \infty}\displaystyle[\frac {12}{n^2}\sum_{r=1}^{n} {r} - \frac{2}{n}\sum_{r=1}^{n} {1}]\]
= \[\lim\limits_{n\to \infty}\displaystyle[\frac {12}{n^2}\frac{n(n + 1)}{2} {-} \frac{2}{n} \cdot{n}]\]
= \[\lim\limits_{n\to \infty}[{6}(\frac{n + 1}{n}) - {2}]\]
= \[\lim\limits_{n\to \infty}[{6}({1}+ \frac{1}{n}) - {2}]\]
= 6(1 + 0) – 2 ...[∵ \[\lim\limits_{n\to \infty} \frac{1}{n} =0] \]
= 4
APPEARS IN
RELATED QUESTIONS
Evaluate the following integrals as limit of a sum:
`int _0^2 e^x * dx`
Evaluate the following integrals as limit of a sum:
\[\int\limits_0^2 (3x^2 - 1)\cdot dx\]
Evaluate the following integrals as limit of a sum : \[\int\limits_1^3 x^3 \cdot dx\]
Evaluate the following integrals as limit of a sum:
\[\int\limits_0^4 x^2 \cdot dx\]
`intx/(x + 2)dx` = ______
If `sum_("r" - 1)^"n" (2"r" + 1) = 440,` then n = _____.
The value of `lim_(x rightarrow 0) 1/x^3 int_0^x (t log (1 + t))/(t^4 + 4) dt` is ______.
`lim_(x rightarrow 0) (1 - cos x)/x^2` is equal to ______.