Advertisements
Advertisements
Question
Evaluate the following integrals as limit of a sum:
`int _0^2 e^x * dx`
Solution
Let f(x) = ex, for 0 ≤ x ≤ 2
DIvide the closed interval [0, 2] into n equal subintervals each of length h at the points
0, 0 + h, 0 + 2h, ..., 0 + rh, ... 0 + nh = 2
i.e. 0,h, 2h, ..., rh, ..., nh = 2
∴ `h = 2/n` and n → ∞, h → 0
Here, a = 0
∴ f(a + rh) = f(0 + rh) = f(rh) = erh
`because int_a^b f(x) dx = lim_(n -> infty) sum_(r = 1)^n f (a + rh)h`
`therefore int_0^2 e^x dx = lim_(r = 1)^n e^(rh) * h`
= `lim_(h -> 0) [h sum_(r = 1)^n e^(rh)]` ...[as n → ∞, h → 0 ]
Now, `sum_(r 1)^n e^(rh) = e^h + e^(2h) + ... + e^(nh)`
= `(e^h [(e^h)^n - 1])/(e^h - 1)`
= `(e^h [e^(nh) - 1])/(e^h - 1)`
= `(e^h * (e^2 - 1))/(e^h - 1) ...[because h = 2/n therefore nh = 2]`
= `(e^2 - 1) e^h/(e^b - 1)`
`therefore int_0^2 e^x dx = lim_(h -> 0) (h(e^2 - 1) e^h)/(e^h - 1)`
= `(e^2 - 1) lim_(h -> 0)(e^h/((e^h - 1)/h))`
= `(e^2 - 1) (lim_(h -> 0)e^h)/(lim_(h -> 0) ((e^h - 1)/h))`
= `(e^2 - 1)(lim_(h -> 0) e^h)/(lim _(h -> 0) ((e^h - 1)/h))`
= `(e^2 - 1) * e^0/1 ...[because lim_(h -> 0) (e^(h - 1))/h = 1]`
= e2 − 1
APPEARS IN
RELATED QUESTIONS
Evaluate the following integrals as limit of a sum : `""int_1^3 (3x - 4).dx`
Evaluate the following integrals as limit of a sum:
\[\int\limits_0^2 (3x^2 - 1)\cdot dx\]
Evaluate the following integrals as limit of a sum : \[\int\limits_1^3 x^3 \cdot dx\]
Evaluate the following integrals as limit of a sum:
\[\int\limits_0^4 x^2 \cdot dx\]
`intx/(x + 2)dx` = ______
If `sum_("r" - 1)^"n" (2"r" + 1) = 440,` then n = _____.
The value of `lim_(x rightarrow 0) 1/x^3 int_0^x (t log (1 + t))/(t^4 + 4) dt` is ______.
`lim_(x rightarrow 0) (1 - cos x)/x^2` is equal to ______.