Advertisements
Advertisements
Question
Evaluate the following integrals as limit of a sum:
\[\int\limits_0^2 (3x^2 - 1)\cdot dx\]
Solution
Let f(x) = 3x2 – 1, for 0 ≤ x ≤ 2.
Divide the closed interval [0, 2] into n subintervals each of length h at the points.
0, 0 + h, 0 + 2h, ..., 0 + rh, .., 0 + nh = 2
i.e. 0, h, 2h, ..., rh, ..., nh = 2
∴ h = `(2)/n "and as " n -> oo, h -> 0`
Here, a = 0
∴ f(a + rh) = f(0 + rh) = f(rh) = 3(rh)2 – 1 = 3r2h2 – 1
∵ \[\int\limits_a^b f(x)\cdot dx = \lim\limits_{n\to \infty}\displaystyle\sum_{r=1}^{n} f(a+rh)\cdot h\]
= \[\int\limits_0^2 (3x^2 - 1)\cdot dx = \lim\limits_{n\to \infty}\displaystyle\sum_{r=1}^{n} (3r^2h^2 - 1)\cdot h\]
= \[\lim\limits_{n\to \infty}\displaystyle\sum_{r=1}^{n} (3r^2 ×\frac{4}{n^2} - 1)\cdot \frac{2}{n} ...[∵ h = \frac{2}{n}]\]
= \[\lim\limits_{n\to \infty}\displaystyle\sum_{r=1}^{n} (\frac{24r^2}{n^3} - \frac{2}{n})\]
= \[\lim\limits_{n\to \infty}[\frac{24}{n^3} \displaystyle\sum_{r=1}^{n} r^2 - \frac{2}{n} \displaystyle\sum_{r=1}^{n} 1]\]
= \[\lim\limits_{n\to \infty}[\frac{24}{n^3} \cdot \frac{n(n + 1)(2n + 1)}{6} - \frac{2}{n} \cdot n]\]
= \[\lim\limits_{n\to \infty}[4 \cdot ( \frac{n + 1}{n})(\frac{2n + 1}{n}) - 2]\]
= \[\lim\limits_{n\to \infty}[4(1 + \frac{1}{n})(2 + \frac{1}{n}) - 2]\]
= \[4(1 + 0)(2 + 0) - 2 ...[∵ \lim\limits_{n\to \infty} \frac{1}{n} = 0]\]
= 8 – 2
= 6
RELATED QUESTIONS
Evaluate the following integrals as limit of a sum : `""int_1^3 (3x - 4).dx`
Evaluate the following integrals as limit of a sum:
`int _0^2 e^x * dx`
Evaluate the following integrals as limit of a sum : \[\int\limits_1^3 x^3 \cdot dx\]
Evaluate the following integrals as limit of a sum:
\[\int\limits_0^4 x^2 \cdot dx\]
`intx/(x + 2)dx` = ______
If `sum_("r" - 1)^"n" (2"r" + 1) = 440,` then n = _____.
The value of `lim_(x rightarrow 0) 1/x^3 int_0^x (t log (1 + t))/(t^4 + 4) dt` is ______.
`lim_(x rightarrow 0) (1 - cos x)/x^2` is equal to ______.