English

Evaluate : ∫01xtan-1x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate : `int_0^1 x tan^-1x*dx`

Sum

Solution

Let I = `int_0^1 x tan^-1x*dx`

= `int_0^1 (tan^-1 x)(x)*dx`

= `[(tan^-1x) int x*dx]_0^1 - int_0^1[d/dx(tan^-1x)* int x*dx]*dx`

= `[(x^2tan^-1x)/2]_0^1 -int_0^1 (1)/(1 + x^2)*x^2/(2)*dx`

= `((1^2tan^-1 1)/2 - 0) - (1)/(2) int_0^1 (1 + x^2 - 1)/(1 + x^2)*dx`

= `(pi/4)/(2) - (1)/(2) int_0^1 (1 - 1/(1 + x^2))*dx`

= `pi/(8) - (1)/(2)[x - tan^-1(x)]_0^1`

= `pi/(8) - (1)/(2)[(1 - tan^-1 1) - 0]`

= `pi/(8) - (1)/(2)(1 - pi/4)`

= `pi/(8) - (1)/(2) + pi/(8)`

= `pi/(4) - (1)/(2)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Exercise 4.2 [Page 171]

APPEARS IN

RELATED QUESTIONS

Prove that:

`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`


 Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`


Evaluate:

`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`


Evaluate:

`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`


Evaluate : `int_0^(pi/4) sec^4x*dx`


Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`


Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`


Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`


Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`


Choose the correct alternative : 

`int_4^9 dx/sqrt(x)` =


Choose the correct alternative :

`int_2^3 x^4*dx` =


Choose the correct alternative :

`int_0^2 e^x*dx` =


Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`


Solve the following:

`int_0^1 e^(x^2)*x^3dx`


Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`


Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`


`int_0^1 sqrt((1 - x)/(1 +  x))  "d"x` =


State whether the following statement is True or False:

`int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`


Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x)  "d"x`


Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x))  "d"x`


Evaluate:

`int_1^2 1/(x^2 + 6x + 5)  dx`


`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?


`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?


Evaluate the following definite integrals:

`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`


Solve the following.

`int_1^3 x^2 logx  dx`


Evaluate the following definite intergral:

`int_1^3 log xdx`


Solve the following.

`int_1^3x^2 logx dx`


Solve the following.

`int_1^3 x^2 log x  dx`


Evaluate the following definite integral:

`int_-2^3 1/(x+5) *dx`


Evaluate the following definite integral:

`int_1^3 logx  dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/ ((9x^2 -1)) dx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the integral.

`int_-9^9 x^3/(4-x^2) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×