Advertisements
Advertisements
Question
Evaluate : `int_0^1 x tan^-1x*dx`
Solution
Let I = `int_0^1 x tan^-1x*dx`
= `int_0^1 (tan^-1 x)(x)*dx`
= `[(tan^-1x) int x*dx]_0^1 - int_0^1[d/dx(tan^-1x)* int x*dx]*dx`
= `[(x^2tan^-1x)/2]_0^1 -int_0^1 (1)/(1 + x^2)*x^2/(2)*dx`
= `((1^2tan^-1 1)/2 - 0) - (1)/(2) int_0^1 (1 + x^2 - 1)/(1 + x^2)*dx`
= `(pi/4)/(2) - (1)/(2) int_0^1 (1 - 1/(1 + x^2))*dx`
= `pi/(8) - (1)/(2)[x - tan^-1(x)]_0^1`
= `pi/(8) - (1)/(2)[(1 - tan^-1 1) - 0]`
= `pi/(8) - (1)/(2)(1 - pi/4)`
= `pi/(8) - (1)/(2) + pi/(8)`
= `pi/(4) - (1)/(2)`.
APPEARS IN
RELATED QUESTIONS
Prove that:
`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`
Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`
Evaluate:
`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate : `int_0^(pi/4) sec^4x*dx`
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`
Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
Choose the correct alternative :
`int_4^9 dx/sqrt(x)` =
Choose the correct alternative :
`int_2^3 x^4*dx` =
Choose the correct alternative :
`int_0^2 e^x*dx` =
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`
Solve the following:
`int_0^1 e^(x^2)*x^3dx`
Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`
Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
State whether the following statement is True or False:
`int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x) "d"x`
Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x)) "d"x`
Evaluate:
`int_1^2 1/(x^2 + 6x + 5) dx`
`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?
`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following definite intergral:
`int_1^3 log xdx`
Solve the following.
`int_1^3x^2 logx dx`
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
Evaluate the following definite integral:
`int_1^3 logx dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/ ((9x^2 -1)) dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the integral.
`int_-9^9 x^3/(4-x^2) dx`