Advertisements
Advertisements
Question
Evaluate : `int_0^(pi/4) sec^4x*dx`
Solution
Let I = `int_0^(pi/4) sec^4x*dx`
= `int_0^(pi/4) sec^2x*sec^2x*dx`
= `int_0^(pi/4) (1 + tan^2x)sec^2x*dx`
Put tan x = t
∴ sec2x·dx = dt
When x = 0, t = tan 0 = 0
When x = `pi/(4), t = tan pi/(4)` = 1
∴ I = `int_0^1 (1 + t^2)*dt`
= `[t + t^3/(3)]_0^1`
= `1+ (1)/(3) - 0`
= `(4)/(3)`.
APPEARS IN
RELATED QUESTIONS
Prove that:
`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`
Evaluate:
`int_0^(pi/2) sqrt(cos x) sin^3x * dx`
Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`
Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`
Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`
Evaluate the following definite integral:
`int_(-2)^3 (1)/(x + 5)*dx`
Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`
Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2)) "d"x`
Evaluate `int_0^1 "e"^(x^2)*"x"^3 "d"x`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5dx`
Evaluate the following integrals:
`int_-9^9 (x^3)/(4 - x^2) dx`
Evaluate the following definite integral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate:
`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`
`int_0^4 1/sqrt(4x - x^2)dx` = ______.
If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x dx` = k then k = ______.
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite intergral:
`int_1^3 log x·dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) · dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Solve the following.
`int_1^3x^2logx dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following definite intergral:
`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`
Solve the following.
`int_1^3x^2log x dx`