English

Evaluate : ∫0π215+4cosx⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`

Sum

Solution

Let I = `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`

Put `tan(x/2)` = t

∴ x = 2 tan–1 t

∴ dx = `(2)/(1 + t^2)dt`
and
cos x = `(1 - t^2)/(1 + t^2)`

When x = 0, t = 0

When x = `pi/2, t = 1`

∴ I = `((2)/(1 + t^2))/(5 + 4((1 - t^2)/(1 + t^2))dt`

= `int_0^1 (2dt)/(5(1 + t^2) + 4(1 - t^2)dt`

= `int _0^1 2/(5 + 5t^2 + 4 - 4t^2)dt`

= `int_0^1 (2)/(t^2 + 9)*dt`

= `2 int_0^1 1/(t^2 + 3^2)dt`

= `2[1/3 tan^-1  t/3]_0^1`

= `2/3 [tan^(-1)  1/3 - tan^(-1) (0)]`

= `2/3 [tan^(-1)  1/3 - 0]`

= `(2)/(3) tan^-1  (1/3)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Exercise 4.2 [Page 172]

APPEARS IN

RELATED QUESTIONS

Evaluate:

`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`


Evaluate : `int_0^(pi/4) sin^4x*dx`


Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`


Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`


Evaluate the following :  `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`


Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`


Evaluate the following : `int_0^pi x sin x cos^2x*dx`


Choose the correct option from the given alternatives :

If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then


Choose the correct option from the given alternatives :

Let I1 = `int_e^(e^2) dx/logx  "and"  "I"_2 = int_1^2 e^x/x*dx`, then


Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`


Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`


Evaluate the following definite integral:

`int_4^9 (1)/sqrt(x)*dx`


Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`


Choose the correct alternative : 

`int_4^9 dx/sqrt(x)` =


Choose the correct alternative :

If `int_0^"a" 3x^2*dx` = 8, then a = ?


Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`


State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`


Solve the following:

`int_0^1 e^(x^2)*x^3dx`


Solve the following : `int_2^3 x/(x^2 - 1)*dx`


Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`


Solve the following : `int_1^2 x^2*dx`


Solve the following : `int_2^4 x/(x^2 + 1)*dx`


Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`


Choose the correct alternative:

`int_4^9 ("d"x)/sqrt(x)` =


`int_1^2 x^2  "d"x` = ______


State whether the following statement is True or False:

`int_0^1 1/(2x + 5)  "d"x = log(7/5)`


`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.


`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?


`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?


Evaluate the following definite integrals:

`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`


Evaluate the following definite integrals:  `int_-2^3 1/(x + 5) *dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5dx`


Evaluate the following definite integral:

`int_4^9 1/sqrt(x)dx`


`int_0^4 1/sqrt(4x - x^2)dx` = ______.


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Evaluate the following definite integral:

`int_-2^3 1/(x+5).dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×