Advertisements
Advertisements
Question
Solve the following : `int_1^2 x^2*dx`
Solution
Let I = `int_1^2 x^2*dx`
= `[x^3/3]_1^2`
= `(1)/(3) (2^3 - 1^3)`
= `(1)/(3)(8 - 1)`
∴ I = `(7)/(3)`.
APPEARS IN
RELATED QUESTIONS
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
Choose the correct alternative :
`int_4^9 dx/sqrt(x)` =
Choose the correct alternative :
`int_"a"^"b" f(x)*dx` =
Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
Choose the correct alternative:
`int_2^3 x^4 "d"x` =
`int_0^"a" 4x^3 "d"x` = 81, then a = ______
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) dx`
Solve the following `int_1^3 x^2log x dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
Evaluate the following definite intergral:
`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`