Advertisements
Advertisements
Question
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
Solution
Let I = `int_0^1 (logx)/sqrt(1 - x^2)*dx`
Put x = sin θ
∴ dx = cos θ dθ
and
`sqrt(1 - x^2) = sqrt(1 - sin^2 theta) = sqrt(cos^2 theta)` = cos θ
When x = 0, sin θ = 0 ∴ θ = 0
When x = 1, sin θ = 1 ∴ θ = `pi/(2)`
∴ I = `int_0^(pi/2) log sin theta *d theta`
Using the property, `int_0^(2a) f(x)*dx = int_0^(a)[f(x) + f(2a - x)]*dx`, we get
I = `int_0^(pi/4) [log sin theta + log sin (pi/2 - theta)]*d theta`
= `int_0^(pi/4) (log sin theta + log cos theta)* d theta`
= `int_0^(pi/4) log sin theta cos theta* d theta`
= `int_0^(pi/4) log((2 sin theta cos theta)/2)*d theta`
= `int_0^(pi/4) (log sin 2 theta - log 2)*d theta`
= `int_0^(pi/4) log sin 2 theta*d theta - int_0^(pi/4) log 2* d theta`
= I1 – I2 ...(Say)
I2 = `int_0^(pi/4) log 2* d theta`
= `log 2 int_0^(pi/4) 1*d theta`
= `log 2 [theta]_0^(pi/4)`
= `(log 2)[pi/4 - 0]`
= `pi/(4) log 2`
I1 = `int_0^(pi/4) log sin 2 theta * d theta`
Put 2θ = t.
Then dθ= `dt/(2)`
When θ = 0, t = 0
When θ = `pi/(4), t = 2(pi/4) = pi/(2)`
∴ I1 = `int_0^(pi/2) log sin t xx dt/(2)`
= `(1)/(2) int_0^(pi/2) log sin theta* d theta`
= `(1)/(2)"I" ...[ because int_a^b f(x)*dx = int_a^b f(t)*dt]`
∴ I = `(1)/(2) "I" - pi/(4)log 2`
∴ `(1)/(2)"I" = - pi/(4) log 2`
∴ I = `- pi/(2) log 2`
= `pi/(2) log (1/2)`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`
Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`
Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`
Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`
Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
Evaluate the following : `int_0^pi x sin x cos^2x*dx`
Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`
Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`
Choose the correct alternative :
`int_"a"^"b" f(x)*dx` =
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
Solve the following : `int_2^4 x/(x^2 + 1)*dx`
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
State whether the following statement is True or False:
`int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Evaluate `int_1^2 (3x)/((9x^2 - 1)) "d"x`
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
`int_0^1 1/(2x + 5)dx` = ______
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/ ((9x^2 -1)) dx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`
Solve the following.
`int_1^3x^2 logx dx`