English

Evaluate the following : ∫01logx1-x2⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`

Sum

Solution

Let I = `int_0^1 (logx)/sqrt(1 - x^2)*dx`

Put x = sin θ
∴ dx = cos θ dθ
and
`sqrt(1 - x^2) = sqrt(1 - sin^2 theta) = sqrt(cos^2 theta)` = cos θ

When x = 0, sin θ = 0  ∴ θ = 0
When x = 1, sin θ = 1  ∴ θ = `pi/(2)`

∴ I = `int_0^(pi/2) log sin theta *d theta`

Using the property, `int_0^(2a) f(x)*dx = int_0^(a)[f(x) + f(2a - x)]*dx`, we get

I = `int_0^(pi/4) [log sin theta + log sin (pi/2 - theta)]*d theta`

= `int_0^(pi/4) (log sin theta + log cos theta)* d theta`

= `int_0^(pi/4) log sin theta cos theta* d theta`

= `int_0^(pi/4) log((2 sin theta cos theta)/2)*d theta`

= `int_0^(pi/4) (log sin 2 theta - log 2)*d theta`

= `int_0^(pi/4) log sin 2 theta*d theta - int_0^(pi/4) log 2* d theta`

= I1 – I2                                                  ...(Say)

I2 = `int_0^(pi/4) log 2* d theta`

= `log 2 int_0^(pi/4) 1*d theta`

= `log 2 [theta]_0^(pi/4)`

= `(log 2)[pi/4 - 0]`

= `pi/(4) log 2`

I1 = `int_0^(pi/4) log sin 2 theta * d theta`

Put 2θ = t. 

Then dθ= `dt/(2)`

When θ = 0, t = 0

When θ = `pi/(4), t = 2(pi/4) = pi/(2)`

∴ I1 = `int_0^(pi/2) log sin t xx dt/(2)`

= `(1)/(2) int_0^(pi/2) log sin theta* d theta`

= `(1)/(2)"I"     ...[ because int_a^b f(x)*dx = int_a^b f(t)*dt]`

∴ I = `(1)/(2) "I" - pi/(4)log 2`

∴ `(1)/(2)"I" = - pi/(4) log 2`

∴ I = `- pi/(2) log 2`

= `pi/(2) log (1/2)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Exercise 4.2 [Page 172]

APPEARS IN

RELATED QUESTIONS

Evaluate : `int_0^(pi/4) sin^4x*dx`


Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`


Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`


Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`


Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`


Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`


Evaluate the following :  `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`


Evaluate the following : `int_0^pi x sin x cos^2x*dx`


Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`


Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`


Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`


Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`


Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`


Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`


Choose the correct alternative :

`int_"a"^"b" f(x)*dx` =


Fill in the blank : `int_0^1 dx/(2x + 5)` = _______


State whether the following is True or False :  `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`


State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`


Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`


Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`


Solve the following : `int_2^4 x/(x^2 + 1)*dx`


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`


State whether the following statement is True or False:

`int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`


Evaluate `int_1^2 (3x)/((9x^2 - 1))  "d"x`


`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following definite intergrals. 

`int_1^3 logx* dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


`int_0^1 1/(2x + 5)dx` = ______


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/ ((9x^2 -1)) dx`


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Evaluate the following definite integral:

`int_1^3 logx.dx`


Evaluate the following definite intergral:

`int_(1)^3logx  dx`


Solve the following.

`int_1^3x^2 logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×