English

Evaluate the following : ∫01(11+x2)sin-1(2x1+x2)⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`

Sum

Solution

Let I = `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`

Put x = tan t, i.e. t = tan–1x
∴ dx = sec2t dt

When x = 1, t = tan–11 = `pi/(4)`

When x = 0, t = tan–1 0 = 0

∴ I = `int_0^(pi/4) (1/(1 + tan^2t))sin^-1 ((2tan t)/(1 + tan^2t))sec^2t*dt`

= `int_0^(pi/4) (1)/(sec^2t) sin^-1 (sin 2t) sec^2t*dt`

= `int_0^(pi/4) 2t*dt`

= `2int_0^(pi/4)t*dt`

= `2[(t^2)/2]_0^(pi/4)`

= `2[pi/(32) - 0]`

= `pi^2/(16)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Miscellaneous Exercise 4 [Page 176]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 4 Definite Integration
Miscellaneous Exercise 4 | Q 3.01 | Page 176

RELATED QUESTIONS

Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`


Evaluate:

`int_0^(pi/4) sqrt(1 + sin 2x)*dx`


Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`


Evaluate : `int_1^3 (cos(logx))/x*dx`


Evaluate the following:

`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`


Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`


Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`


Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`


Evaluate the following : `int_(-2)^(3) |x - 2|*dx`


Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`


Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`


Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`


Choose the correct alternative :

`int_2^3 x/(x^2 - 1)*dx` =


Choose the correct alternative :

If `int_0^"a" 3x^2*dx` = 8, then a = ?


Choose the correct alternative :

`int_2^3 x^4*dx` =


Choose the correct alternative :

`int_0^2 e^x*dx` =


Fill in the blank : `int_0^1 dx/(2x + 5)` = _______


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`


Solve the following:

`int_0^1 e^(x^2)*x^3dx`


Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`


Choose the correct alternative:

`int_(-2)^3 1/(x + 5)  "d"x` =


`int_1^2 x^2  "d"x` = ______


`int_0^"a" 4x^3  "d"x` = 81, then a = ______


Evaluate `int_1^"e" 1/(x(1 + log x)^2)  "d"x`


Evaluate `int_1^2 (3x)/((9x^2 - 1))  "d"x`


`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?


Evaluate the following definite intergrals. 

`int_1^3 logx* dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)  dx`


Solve the following.

`int_1^3x^2 logx dx`


`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x  dx` = k then k = ______.


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2-1))dx`


Solve the following.

`int_0^1 e^(x^2) x^3  dx`


Evaluate the following definite integral:

`int_-2^3 1/(x+5).dx`


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Solve the following.

`int_1^3x^2 logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×