English

Evaluate the following : ∫01t21-t⋅dt - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`

Sum

Solution

We use the property,

`int_0^a f(t)*dt = int_0^a f(a - t)*dt`

∴ `int_0^1 t^2 sqrtt(1 - t)*dt = int_0^1 (1 - t)^2 sqrt(1 - 1 + t)*dt`

= `int_0^1 (1 - 2t + t^2)sqrt(t)*dt`

= `int_0^1 (t^(1/2) - 2t^(3/2) + t^(5/2))*dt`

= `[(t^(3/2))/(3/2) - 2*(t(5)/(2))/(5/2) + (t^(7/2))/(7/2)]_0^1`

= `(2)/(3)(1)^(3/2) - (4)/(5)(1)^(5/2) + (2)/(7)(1)^(7/2) - 0`

= `(2)/(3) - (4)/(5) + (2)/(7) - 0`

= `(70 - 84 + 30)/(105)`

= `(16)/(105)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Exercise 4.2 [Page 172]

APPEARS IN

RELATED QUESTIONS

Evaluate : `int_0^(pi/4) sin^4x*dx`


Evaluate : `int_0^1 x tan^-1x*dx`


Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`


Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`


Evaluate the following:

`int_0^pi x/(1 + sin^2x) * dx`


Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`


Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.


Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`


Choose the correct alternative :

`int_2^3 x^4*dx` =


Choose the correct alternative :

`int_0^2 e^x*dx` =


Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`


Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`


Prove that: `int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)  "d"x`. Hence find `int_0^(pi/2) sin^2x  "d"x` 


`int_1^2 x^2  "d"x` = ______


Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x))  "d"x`


Evaluate `int_2^3 x/((x + 2)(x + 3))  "d"x`


Evaluate `int_1^3 log x  "d"x`


Evaluate the following definite integrats: 

`int_4^9 1/sqrt x dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following definite integral :

`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`


Evaluate the following integrals:

`int_0^1 x(1 - x)^5 dx`


Solve the following.

`int_1^3 x^2 logx  dx`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x + 5)dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2-1 )`dx


Evaluate the following definite intergral:

`int _1^3logxdx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Prove that `int_0^(2a) f(x)dx = int_0^a[f(x)  + f(2a - x)]dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)dx`


Solve the following.

`int_0 ^1 e^(x^2) * x^3`dx


Evaluate the following definite intergral:

`int_1^2 (3x)/ ((9x^2 -1)) dx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Solve the following.

`int_1^3x^2 logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×