English

Solve the following : ∫35dxx+4+x-2 - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`

Sum

Solution

Let I = `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`

= `int_3^5 (1)/(sqrt(x + 4) + sqrt(x - 2)) xx (sqrt(x + 4) - sqrt(x - 2))/(sqrt(x + 4) - sqrt(x - 2))*dx`

= `int_3^5 (sqrt(x + 4) - sqrt(x - 2))/((sqrt(x + 4))^2 - (sqrt(x - 2))^2)*dx`

= `int_3^5 (sqrt(x + 4) - sqrt(x - 2))/(x + 4 - (x - 2))*dx`

= `int_3^5 (sqrt(x + 4) - sqrt(x - 2))/(6)*dx`

= `(1)/(6) int_3^5 (x + 4)^(1/2)*dx - (1)/(6) int_3^5 (x - 2)^(1/2)*dx`

= `(1)/(6) [((x + 4)^(3/2))/(3/2)]_3^5 - (1)/(6)[((x - 2)^(3/2))/(3/2)]_3^5`

= `(1)/(9)[(9)^(3/2) - (7)^(3/2)] - (1)/(9) [(3)^(3/2) - (1)^(3/2)]`

= `(1)/(9) (27 - 7sqrt(7)) - (1)/(9) (3sqrt(3) - 1)`

= `(1)/(9)(27 - 7sqrt(7) - 3sqrt(3) + 1)`

∴ I = `(1)/(9)(28 - 3sqrt(3) - 7sqrt(7))`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 6: Definite Integration - MISCELLANEOUS EXERCISE - 6 [Page 150]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
Chapter 6 Definite Integration
MISCELLANEOUS EXERCISE - 6 | Q IV) 10) | Page 150
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×