Advertisements
Advertisements
Question
Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`
Solution
Let I = `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`
= `int_3^5 (1)/(sqrt(x + 4) + sqrt(x - 2)) xx (sqrt(x + 4) - sqrt(x - 2))/(sqrt(x + 4) - sqrt(x - 2))*dx`
= `int_3^5 (sqrt(x + 4) - sqrt(x - 2))/((sqrt(x + 4))^2 - (sqrt(x - 2))^2)*dx`
= `int_3^5 (sqrt(x + 4) - sqrt(x - 2))/(x + 4 - (x - 2))*dx`
= `int_3^5 (sqrt(x + 4) - sqrt(x - 2))/(6)*dx`
= `(1)/(6) int_3^5 (x + 4)^(1/2)*dx - (1)/(6) int_3^5 (x - 2)^(1/2)*dx`
= `(1)/(6) [((x + 4)^(3/2))/(3/2)]_3^5 - (1)/(6)[((x - 2)^(3/2))/(3/2)]_3^5`
= `(1)/(9)[(9)^(3/2) - (7)^(3/2)] - (1)/(9) [(3)^(3/2) - (1)^(3/2)]`
= `(1)/(9) (27 - 7sqrt(7)) - (1)/(9) (3sqrt(3) - 1)`
= `(1)/(9)(27 - 7sqrt(7) - 3sqrt(3) + 1)`
∴ I = `(1)/(9)(28 - 3sqrt(3) - 7sqrt(7))`.
APPEARS IN
RELATED QUESTIONS
Evaluate:
`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate:
`int_0^(pi/2) sqrt(cos x) sin^3x * dx`
Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Evaluate : `int_1^3 (cos(logx))/x*dx`
Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Prove that: `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`. Hence find `int_0^(pi/2) sin^2x "d"x`
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
State whether the following statement is True or False:
`int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following definite intergral:
`int_(-2)^3 1/(x + 5)dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2 - 1))dx`