Advertisements
Advertisements
Question
Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______
Solution
Let I = `int_2^3 x/(x^2 - 1)*dx`
Put x2 – 1 = t
∴ 2x·dx = dt
∴ x·dx = `(1)/(2)*dt`
When x = 2, t = 22 – 1 = 3
When x = 3, t = 32 – 1 = 8
∴ I = `int_3^8 (1)/"t"*"dt"/(2)`
= `(1)/(2)int_3^8 "dt"/"t"`
= `(1)/(2)[log |"t"|]_3^8`
= `(1)/(2)(log 8 - log 3)`
∴ I = `(1)/(2) log (8/3)`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate : `int_0^(pi/4) sec^4x*dx`
Evaluate : `int_1^3 (cos(logx))/x*dx`
Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`
Choose the correct option from the given alternatives :
`int_0^(pi/2) sn^6x cos^2x*dx` =
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`
Evaluate the following : `int_0^pi (sin^-1x + cos^-1x)^3 sin^3x*dx`
Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`
Solve the following:
`int_1^3 x^2 log x*dx`
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Evaluate the following definite integral:
`int_1^3 logx dx`
Evaluate the following definite intergral:
`int_1^3logxdx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`